Cho tam giác ABC cân tại A, đường cao AH. Qua điểm B vẽ đường thẳng song song với AC,
cắt đường thẳng AH tại điểm D. Chứng minh rằng:
a) ∆ = ∆ ABH ACH b) AB = BD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xet ΔABH và ΔACH có
AB=AC
BH=CH
AH chung
=>ΔABH=ΔACH
=>góc BAH=góc CAH
=>AH là phân giác của góc BAC
b: góc DAH=góc CAH=góc DHA
=>ΔDAH cân tại D
c, G là trọng tâm
⇒HG=13AH=2(cm)⇒HG=13AH=2(cm)
d, Ta có: BAHˆ=CAHˆBAH^=CAH^ ( theo a )
Mà FHGˆ=CAHˆFHG^=CAH^ ( so le trong và Hx // AC )
⇒FHGˆ=BAHˆ⇒FHG^=BAH^
Chúc mn sang năm mới học giỏi nha !
⇒ΔAFH⇒ΔAFHcân tại F
⇒FA=FH⇒FA=FH (1)
Lại có: FHBˆ=ACBˆFHB^=ACB^ ( đồng vị và Hx // AC )
Mà ABCˆ=ACBˆABC^=ACB^ ( t/g ABC cân tại A )
⇒FHBˆ=ABCˆ⇒FHB^=ABC^
hay FHBˆ=FBHˆFHB^=FBH^
⇒ΔFBH⇒ΔFBH cân tại F
⇒FB=FH⇒FB=FH
Từ (1), (2) ⇒FB=FA⇒FB=FA
⇒CF⇒CF là trung tuyến
Mà G là trọng tâm
⇒C,G,F⇒C,G,F thẳng hàng ( đpcm )
Vậy...
https://h.vn/hoi-dap/tim-kiem?q=Cho+tam+gi%C3%A1c+ABC+c%C3%A2n+t%E1%BA%A1i+A.+K%E1%BA%BB+AH+vu%C3%B4ng+g%C3%B3c+BC+t%E1%BA%A1i+H++a)+CM+tam+gi%C3%A1c+ABH=tam+gi%C3%A1c+ACH++b)+V%E1%BA%BD+trung+tuy%E1%BA%BFn+BM.+G%E1%BB%8Di+G+l%C3%A0+giao+%C4%91i%E1%BB%83m+c%E1%BB%A7a+AH+v%C3%A0+BM.+Ch%E1%BB%A9ng+minh+G+l%C3%A0+tr%E1%BB%8Dng+t%C3%A2m+c%E1%BB%A7a+tam+gi%C3%A1c+ABC++c)+Cho+AB=30cm,+BH=18cm.+T%C3%ADnh+AH,AG++d)+T%E1%BB%AB+H+k%E1%BA%BB+HD+song+song+v%E1%BB%9Bi+AC(D+thu%E1%BB%91c+AB),+ch%E1%BB%A9ng+minh+ba+%C4%91i%E1%BB%83m+C,G,D+th%E1%BA%B3ng+h%C3%A0ng&id=248109
a) Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC(ΔABC cân tại A)
AH chung
Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)
Suy ra: BH=CH(hai cạnh tương ứng)
mà B,H,C thẳng hàng(gt)
nên H là trung điểm của BC(Đpcm)
b) Xét ΔAMB và ΔCME có
\(\widehat{AMB}=\widehat{CME}\)(hai góc đối đỉnh)
MA=MC(M là trung điểm của AC)
\(\widehat{BAM}=\widehat{ECM}\)(hai góc so le trong, AB//CE)
Do đó: ΔAMB=ΔCME(g-c-g)
Xét ΔABC có
BM là đường trung tuyến ứng với cạnh AC(M là trung điểm của AC)
AH là đường trung tuyến ứng với cạnh BC(H là trung điểm của BC)
BM cắt AH tại I(gt)
Do đó: I là trọng tâm của ΔABC(Tính chất ba đường trung tuyến của tam giác)
Lời giải:
a.
Xét tam giác $ABH$ và $ACH$ có:
$AB=AC$ (do $ABC$ cân tại $A$)
$AH$ chung
$\widehat{AHB}=\widehat{AHC}=90^0$
$\Rightarrow \triangle ABH=\triangle ACH$ (ch-cgv)
b.
Do $BD\parallel AC$ nên $\widehat{DBH}=\widehat{HCA}=\widehat{ABH}$ (hai góc so le trong)
Xét tam giác $DBH$ và $ABH$ có:
$BH$ chung
$\widehat{DBH}=\widehat{ABH}$ (cmt)
$\widehat{BHD}=\widehat{BHA}=90^0$
$\Rightarrow \triangle DBH=\triangle ABH$ (g.c.g)
$\Rightarrow DB=AB$ (đpcm)
Hình vẽ: