K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: Cho tam giác ABC , các đường phân giác của góc ngoài tai B và C cất nhau ở E . Gọi G,H,K thứ tự là chân các đường vuông góc kẻ từ E đến các đường thẳng BC,AB,ACa) có nhận xét gì về các độ dài  EH , EG , EKb) CM AE là phân giác của góc BACc) Đường phân giác của góc ngoài tại A của tam giác ABC cắt các đường thẳng BE, CEtaij D, F . CMR EA vuông góc với DFd) Các  đường AE, BF , CD là các...
Đọc tiếp

Bài 1: Cho tam giác ABC , các đường phân giác của góc ngoài tai B và C cất nhau ở E . Gọi G,H,K thứ tự là chân các đường vuông góc kẻ từ E đến các đường thẳng BC,AB,AC

a) có nhận xét gì về các độ dài  EH , EG , EK

b) CM AE là phân giác của góc BAC

c) Đường phân giác của góc ngoài tại A của tam giác ABC cắt các đường thẳng BE, CEtaij D, F . CMR EA vuông góc với DF

d) Các  đường AE, BF , CD là các đường gì trong tam giác ABC

e) Các đường EA , FB , DC là các đường gì trong tam giác DEF

Mình làm được câu a,b,c rồi còn 2 câu d,e nữa rất mong các bạn giải giúp mình 2 câu cuối 

Bài 2 : Cho tam giác ABC vuông tại A . vé đường cao AH . trên cạnh BC lấy điểm Dsao cho BD =BA

a) CM góc BAD = góc ADB

b) CM AD là phân giác của góc HAC

c) vẽ DK vuông góc với  AC (K\(\in\)AC) . CM AK =AH

d) CM AB+AC < BC + 2AH

Mình mới làm được câu a , mấy câu còn lại mong các bạn giúp mình nhé ! Bạn nào làm nhanh nhất mình sẽ tích cho bạn đó . Cảm ơn nhiều .hi hi !!

0
18 tháng 12 2017

Ta có: E thuộc tia phân giác của ∠(CBH)

Suy ra: EG = EH (tính chất tia phân giác) (1)

      E thuộc tia phân giác của ∠(BCK)

QUẢNG CÁO

Suy ra: EG = EK (tính chất tia phân giác) (2)

Từ (1) và (2) suy ra: EH = EG = EK.

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

29 tháng 7 2017

a) E thuộc tia phân giác của CBH^

EG = EH (tính chất tia phân giác) (1)

E thuộc tia phân giác của BCK^

EG = EK (tính chất tia phân giác) (2)

Từ (1) và (2) suy ra: EH = EG = EK

b) EH = EK

E thuộc tia phân giác của BAC^ mà E # A

Vậy AE là tia phân giác của BAC^

c) AE là tia phân giác góc trong tại đỉnh A.

AF là tia phân giác góc ngoài tại đỉnh A.

AE⊥AF (tính chất hai góc kề bù)

Hay AE⊥DF

d) Chứng minh tương tự câu a ta có BF là tia phân giác của ABC^

CD là tia phân giác của ACB^

Vậy các đường AE, BF, CD là các đường phân giác của ∆ABC

e) BF là phân giác góc trong tại đỉnh B.

BE là phân giác góc ngoài tại đỉnh B.

⇒BF⊥BE (tính chất hai góc kề bù)

Hay BF⊥ED

CD là đường phân giác góc trong tại C

CE là đường phân giác góc ngoài tại C

⇒CD⊥CE (tính chất hai góc kề bù)

Hay

24 tháng 2 2018

a) E thuộc tia phân giác của ˆCBHCBHˆ

⇒⇒ EG = EH (tính chất tia phân giác) (1)

E thuộc tia phân giác của ˆBCKBCKˆ

⇒⇒ EG = EK (tính chất tia phân giác) (2)

Từ (1) và (2) suy ra: EH = EG = EK

b) EH = EK

⇒⇒ E thuộc tia phân giác của ˆBACBACˆ mà E # A

Vậy AE là tia phân giác của ˆBACBACˆ

c) AE là tia phân giác góc trong tại đỉnh A.

AF là tia phân giác góc ngoài tại đỉnh A.

⇒⇒ AE⊥AFAE⊥AF (tính chất hai góc kề bù)

Hay AE⊥DFAE⊥DF

d) Chứng minh tương tự câu a ta có BF là tia phân giác của ˆABCABCˆ

CD là tia phân giác của ˆACBACBˆ

Vậy các đường AE, BF, CD là các đường phân giác của ∆ABC

e) BF là phân giác góc trong tại đỉnh B.

BE là phân giác góc ngoài tại đỉnh B.

⇒BF⊥BE⇒BF⊥BE (tính chất hai góc kề bù)

Hay BF⊥EDBF⊥ED

CD là đường phân giác góc trong tại C

CE là đường phân giác góc ngoài tại C

⇒CD⊥CE⇒CD⊥CE (tính chất hai góc kề bù)

Hay CD⊥EF

18 tháng 5 2018
17 tháng 5 2019

Ta có: BF là tia phân giác góc trong tại đỉnh B

      BE là tia phân giác góc ngoài tại đỉnh B

Suy ra: BF ⊥ BE (tính chất hai góc kề bù)

Vậy BF ⊥ ED.

Lại có: CD là đường phân giác góc ngoài tại C

      CE là đường phân giác góc trong tại C

Suy ra: CD ⊥ CE (tính chất hai góc kề bù)

Vậy CD ⊥ EF.

Vậy các đường thẳng EA; FB; DC là các đường cao trong tam giác DEF.

25 tháng 5 2016

Bạn tự vẽ hình nhaleu

a.

EB là tia phân giác của ABC

=> EH = EG (1)

EC là tia phân giác của ACB

=> EK = EG (2)

Từ (1) và (2)

=> EH = EG = EK

b.

EB là tia phân giác của ABC

EC là tia phân giác của ACB

=> E là giao điểm của ba đường phân giác của tam giác ABC

=> AE là tia phân giác của BAC

c.

Gọi Ax là tia đối của tia AC

xAB + BAC = 1800

xAB = 1800 - BAC

AF là tia phân giác của xAB

=> xAF = FAB = \(\frac{xAB}{2}=\frac{180^0-BAC}{2}=90^0-\frac{BAC}{2}\)

AE là tia phân giác của BAC

=> BAE = EAC = BAC/2

FAE = FAB + BAE

       \(=90^0-\frac{BAC}{2}+\frac{BAC}{2}\)

        = 900

=> AE _I_ DF

Chúc bạn học tốtok