Cho tam giác ABC có AB=AC gọi D là trung điểm của cạnh BC. Kẻ DE vuông góc với AB, DF vuông góc với AC. Chứng minh:
a) tam giác BED= tam giác DFC
b) tam giác DEA= tam giác DFA
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAED vuông tại E và ΔAFD vuông tại F có
AD chung
góc EAD=góc FAD
=>ΔAED=ΔAFD
=>AE=AF và DE=DF
=>AD là trung trực của EF
b: Sửa đề: ΔEKF
Xét ΔEKF có
FD là trung tuyến
FD=EK/2
=>ΔFEK vuông tại F
a. lỗi
b. Xét tam giác ABD và tam giác ACD:
AB = AC (tam giác ABC cân tại A)
AD chung
BD = CD ( D là trung điểm BC)
=> tam giác ABD = tam giác ACD (c-c-c)
=> góc BAD = góc CAD (2 góc tương ứng)
Xét tam giác AED và tam giác AFD:
AED = AFD (DE ⊥ AB
DF ⊥ AC)
góc BAD = góc CAD (cmt)
AD chung
=> tam giác AED và tam giác AFD (ch-gn) (đpcm)
a: Xét ΔEBD vuông tại E và ΔFCD vuông tại F có
BD=CD
\(\widehat{B}=\widehat{C}\)
Do đó: ΔEBD=ΔFCD
Suy ra: EB=FC
b: Ta có: ΔABC cân tại A
mà AD là đường trung tuyến
nên AD là trung trực của BC
c: Xét ΔAED vuông tại E và ΔAFD vuông tại F có
AD chung
DE=DF
Do đó: ΔAED=ΔAFD
d: Xét ΔABC có AE/AB=AF/AC
nên EF//BC
a: XétΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó:ΔBAD=ΔBED
Xét ΔADF vuông tại A và ΔEDC vuông tại E có
DA=DE
\(\widehat{ADF}=\widehat{EDC}\)
Do đó: ΔADF=ΔEDC
Suy ra: DF=DC
hay ΔDFC cân tại D
b: Ta có: DE=DA
mà DA<DF
nên DE<DF
a. Xét tam giác ABD và tam giác ACD
AB = AC ( ABC cân )
góc B = góc C ( ABC cân )
AD : cạnh chung
Vậy tam giác ABD = tam giác ACD ( c.g.c )
b. ta có trong tam giác ABC đường trung tuyến cũng là đường cao
=> AD vuông BC
CD = BC : 2 = 12 : 2 =6cm
c.áp dụng định lý pitago vào tam giác vuông ADC
\(AC^2=AD^2+DC^2\)
\(AD=\sqrt{10^2-6^2}=\sqrt{64}=8cm\)
d.Xét tam giác vuông BDE và tam giác vuông CDF có:
AD = CD ( gt )
góc B = góc C
Vậy tam giác vuông BDE = tam giác vuông CDF ( cạnh huyền . góc nhọn)
=> DE = DF ( 2 cạnh tương ứng )
=> tam giác DEF cân tại D
a) Tam giác ABD và tam giác ACD có:
BD = CD (Vì D là trung điểm của BC)
góc B = góc C
(vì tam giác ABC cân tại A)
AB = AC
Do đó: am giác ABD = tam giác ACD (c.g.c)
Suy ra: Góc ADB = góc ADC (cặp góc t/ứng)
b) Vì góc ADB = góc ADC (cmt) mà góc ADB + góc ADC 180 độ (2 góc kề bù)
nên góc ADB = 180 độ / 2 = 90 độ => AD vuông góc với BC
c) Ta có : BD + CD = BC ( Vì D nằm giữa B và C)
mà BC = 12 cm
=> CD = 12 /2 = 6 cm
Vì AD vuông góc với BC nên tam giác ADC vuông tại D
=> AC2AC2 = AD2AD2 +CD2CD2 (Định lý Pytago)
=> 10^2 = AD ^ 2 + 6 ^2
=> AD^2 = 64
=> AD = 8 (cm) (vì AD > 0 )
d) bạn c/m cho tam giác DEB = tam giác DFC (cạnh huyền - góc nhọn) nhé
=> DE = DF (cặp cạnh tương ứng) => tam giác DEF cân tại D( đn)
a)Xét \(\Delta ABD\) và \(\Delta ACD\) có :
\(BD=DC\)
\(\widehat{ABD}=\widehat{ACD}\left(\Delta ABCcân\right)\)
AB= AC
=> \(\Delta ABD\) = \(\Delta ACD\) (c-g-c)
b) Vì \(\Delta ABC\) cân tại A nên AD vừa là đường trung tuyến vừa là đường cao
=> \(AD\perp BC\)
*Nếu chx học cách trên thì bạn xem cách dưới đây"
Vì \(\Delta ABD\) = \(\Delta ACD\) nên \(\widehat{ADB}=\widehat{ADC}\)
mà \(\widehat{ADB}+\widehat{ADC}=180^o\)
=> \(\widehat{ADB}=\widehat{ADC}=\dfrac{180^o}{2}=90^o\)
=> \(AD\perp BC\)
c)Xét \(\Delta EBD\) vuông tại E và \(\Delta FCD\) vuông tại F có :
\(\widehat{EBD}=\widehat{FCD}\)
\(BD=CD\)
=> \(\Delta EBD=\Delta FCD\left(ch-gn\right)\)
d) Vì D là trung điểm của BC nên \(DC=\dfrac{BC}{2}=\dfrac{12}{2}=6cm\)
Xét \(\Delta ADC\) vuông tại D có :
\(AC^2=AD^2+DC^2\)
\(100=AD^2+36\)
\(AD^2=100-36\)
\(AD^2=64\)
AD=8 cm
a: Xét ΔABD và ΔACD co
AB=AC
BD=CD
AD chung
=>ΔABD=ΔACD
b: ΔABD=ΔACD
=>góc BAD=góc CAD
=>AD là phân giác của góc BAC
c: Xét ΔAED vuông tại E và ΔAFD vuông tại F có
AD chung
góc EAD=góc FAD
=>ΔAED=ΔAFD
d: Xét ΔDEB vuông tại E và ΔDFC vuông tại F có
DB=DC
DE=DF
=>ΔDEB=ΔDFC
Tham khảo
Câu hỏi của Hot girl 2k5 - Toán lớp 7 - Học toán với OnlineMath
mik ko hieu cau c cho lam, ai giang giup mik cau c voi :((
a: Xet ΔEBD vuông tại E và ΔFCD vuông tại F có
BD=CD
góc B=góc C
=>ΔEBD=ΔFCD
b: Xet ΔAED vuông tại E và ΔAFD vuông tại F có
AD chung
DE=DF
=>ΔAED=ΔAFD