Cho hình vuông ABCD. Trên cạnh AB lấy điểm E sao cho E = 1/3 AB. Đường thẳng DE cắt CB kéo dài tại K
a) Chứng minh: △ ADE đồng dạng với △ BKE
b) Gọi H là hình chiếu của C trên DE. Chứng minh: AD.HD = HC.AE
c) Tính diện tích △ CDK khi độ dài AB = 6cm
d) Chứng minh: CH.KD = CD2 + CB.KB
a: Xét ΔEAD và ΔEBK có
góc EAD=góc EBK
góc AED=góc BEK
=>ΔEAD đồng dạng với ΔEBK
b: Xét ΔAED và ΔHDC có
góc AED=góc HDC
góc A=góc DHC
=>ΔAED đồng dạngvới ΔHDC
=>AE/HD=AD/HC
=>AE*HC=HD*AD
d: CD^2+CB*KB
=BC^2+BC*KB
=BC*(BC+KB)
=BC*KC
=CD*KC=CH*KD