tim x biet [ 4x - 15 ] ^ 2016 = [ 4x - 15 ] ^ 2015
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(4x-15\right)^{2016}=\left(4x-15\right)^{2015}\\ \Leftrightarrow\left[{}\begin{matrix}4x-15=0\\4x-15=1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}4x=15\\4x=16\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{15}{4}\\x=4\end{matrix}\right.\)
Vậy \(x\in\left\{\dfrac{15}{4};4\right\}\)
a) => (4x-15).(4x-15)2015=(4x-15)2015
=> 4x-15=1
=> x=4
b) => 4.2x+6-480= 0
=> 4.2x-474=0
=> 4.2x=474
=> 2x= 118,5
ko có gt x thoả mãn đề bài
chả biết câu b trình bày đúng hay sai, hay là đầu bài chép nhầm nữa. Nếu sai ai đó chữa lại hộ cái nhé
_HẾT_
b, 2x+2x+1+2x+2+2x+3-480=0
2^x.1+2^x.2+2^x.2^2+2^x.2^3=480
2^x.(1+2+2^2+2^3)=480
2^x.15=480
2^x=32
2^x=2^5
x=5
1) Áp dụng tích chất dãy tỉ số bằng nhau ta có:
\(\frac{x+y}{2015}=\frac{xy}{2016}=\frac{x-y}{2017}=\frac{x+y-x+y}{2015-2017}=\frac{2y}{-2}\)
\(=-y\)
\(\Rightarrow xy=-2016y;x+y=-2015y;\)
\(x-y=-2017y\)
\(\Rightarrow-2016y-xy=0\)
\(\Rightarrow y\left(-2016-x\right)=0\)
\(\Rightarrow\orbr{\orbr{\begin{cases}y=0\\-2016-x=0\end{cases}\Rightarrow}}\orbr{\begin{cases}y=0\\x=-2016\end{cases}}\)
\(+) \)\(y=0\Rightarrow0+x=-2015.0=0\Rightarrow x=0\)
\(+) \)\(x=-2016\Rightarrow-2016-y=-2017y\Rightarrow-2016\)
Vậy +) x=y=0
+) x=-2016;y=1
2) Có: \(\frac{2x+2}{3}=\frac{x+1}{1,5};\frac{4z+2}{5}=\frac{z+0,5}{1,25};\frac{3y-1}{4}=\frac{y-\frac{1}{3}}{\frac{4}{3}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x+1}{1,5}=\frac{y-\frac{1}{3}}{\frac{4}{3}}=\frac{z+0,5}{1,25}=\frac{x+y+z+\left(1-\frac{1}{3}+0,5\right)}{1,5+\frac{4}{3}+1,25}=\frac{7+\frac{7}{6}}{\frac{49}{12}}=2\)
Suy ra: \(x+1=2.1,5=3\Rightarrow x=2\)
\(y-\frac{1}{3}=2.\frac{4}{3}=\frac{8}{3}\Rightarrow y=3\)
\(z+0,5=2.1,25=2,5\Rightarrow z=2\)
Vậy x=2;y=3;z=2.
1) 3x - 6 = 5x + 2
=> 3x - 5x = 2 + 6
=> -2x = 8
=> x = -4
2) 15 - x = 4x - 5
=> 15 + 5 = 4x + x
=> 20 = 5x
=> x = 4
3) x - 15 = 6 + 4x
=> x - 4x = 6 + 15
=> -3x = 21
=> x = -7
4) -12 + x = 5x - 20
=> x - 5x = -20 + 12
=> -4x = -8
=> x = 2
5) 7x - 4 = 20 + 3x
=> 7x - 3x = 20 + 4
=> 4x = 24
=> x = 6
1) 3x- 6 = 5x + 2
5x - 3x = -6 - 2
2x = -8 => x = -4
Tương tự như trên
a) 5 - x + 12 = 4 + x + 1
17 - x = 5 + x
x - (-x) = 17 - 5
2x = 12
x = 6
b) 4x - 5 + (-15) = 3x - 10
4x - 20 = 3x - 10
3x - 4x = -20 + 10
-x = -10
x = 10
a)
5 - x + 12 = 4 + x + 1
17 - x = 5 + x x - (-x)
= 17 - 5 2x
= 12 x
= 6 b)
4x - 5 + (-15)
= 3x - 10 4x - 20
= 3x - 10 3x - 4x
= -20 + 10 -x
= -10 x = 10
Ta có: (x+2015)^2016>=0(với mọi x)
|y-2017|>=0(với mọi y)
Do đó, (x+2015)^2016+|y-2017|>=0(với mọi x,y)
mà (x+2015)^2016+|y-2017|=0
nên (x+2015)^2016=0 và |y-2017|=0
x+2015=0 y-2017=0
x=0-2015 y=0+2017
x=-2015 y=2017
Vậy x=-2015 và y=2017 thì x,y thỏa mãn đề
Ta có: \(\frac{x+y}{2014}\)=\(\frac{x-y}{2016}\)
=>\(2016x+2016y=2014x-2014y\)
=> \(2x=-4030y\)
=>\(x=-2015y\)
\(Thay\)\(x=-2015\)vào \(\frac{x+y}{2014}=\frac{xy}{2015}\)ta được
\(\frac{-2015+y}{2014}=\frac{-2015y}{2015}\)
\(\frac{-2014y}{2014}=\frac{-2015y^2}{2015}\)
\(-y=-y^2\)
=>\(y-y^2=0\)
\(y\).(\(1-y\))\(=0\)
\(=>\orbr{\begin{cases}y=0\\1-y=0\end{cases}}=>\orbr{\begin{cases}y=0\\y=1\end{cases}}\)
TH1 :\(y=0=>x.y=-2015.0=0\)
TH2 :\(y=1=>x.y=-2015.1=-2015\)
\(\left(4.x-15\right)^{2016}=\left(4.x-15\right)^{2015}\)
=>\(\left(4.x-15\right)^{2016}-\left(4.x-15\right)^{2015}=0\)
=>\(\left(4.x-15\right)^{2015}.\left[\left(4.x-15\right)-1\right]=0\)
=>\(\hept{\begin{cases}\left(4.x-15\right)^{2015}=0\\\left(4.x-15\right)-1=0\end{cases}}\)=>\(\hept{\begin{cases}4x-15=0\\4.x-15-1=0\end{cases}}\)=>\(\hept{\begin{cases}4x=15\\4x=16\end{cases}}\)
=>\(\hept{\begin{cases}x=\frac{15}{4}\\x=4\end{cases}}\)
Vậy.................
(4x - 15)2016 = (4x - 15)2015
(4x - 5)2016 - (4x - 15)2015 = 0
(4x - 5)2015.(4x - 15) - (4x - 15)2015 = 0
(4x - 5)2015.[(4x - 15) - 1] = 0
=> \(\orbr{\begin{cases}\left(4x-5\right)^{2015}=0\\\left(4x-15\right)-1=0\end{cases}}\)=>\(\orbr{\begin{cases}4x-15=0\\4x-15=1\end{cases}}\)
=> \(\orbr{\begin{cases}4x=15\\4x=16\end{cases}}\)=>\(\orbr{\begin{cases}x=\frac{15}{4}\\x=4\end{cases}}\)