K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 4 2023

Lời giải:

Áp dụng BĐT Cauchy-Schwarz:
$P=\frac{18}{a^2+b^2}+\frac{10}{2ab}\geq \frac{(\sqrt{18}+\sqrt{10})^2}{a^2+b^2+2ab}$

$=\frac{(\sqrt{18}+\sqrt{10})^2}{(a+b)^2}=(\sqrt{18}+\sqrt{10})^2=28+12\sqrt{5}$

Vậy $P_{\min}=28+12\sqrt{5}$

9 tháng 12 2021

ab=1

⇒ \(a=\dfrac{1}{b}\)

⇒ \(a^2=\dfrac{1}{b^2}\)

Thay vào P:

\(P=\dfrac{1}{\dfrac{1}{b^2}}+\dfrac{1}{b^2}+\dfrac{2}{\dfrac{1}{b^2}+b^2}\)

   \(=\left(b^2+\dfrac{1}{b^2}\right)+\dfrac{2}{b^2+\dfrac{1}{b^2}}\)

Áp dụng BĐT Cô Si cho 2 số dương

⇒ \(P\) ≥ \(2\sqrt{\left(b^2+\dfrac{1}{b^2}\right).\dfrac{2}{b^2+\dfrac{1}{b^2}}}\)

       \(=2\sqrt{2}\)

Min P= \(2\sqrt{2}\) ⇔ \(b^2=\dfrac{1}{b^2}\) ⇔b=1

 

22 tháng 1 2021

Các bạn trả lời tích cực nhé giáo viên Toán của Hoc24 sẽ nhận xét và cộng GP cho các em ^^

AH
Akai Haruma
Giáo viên
14 tháng 1 2023

Lời giải:
\(P=\frac{3}{ab+bc+ac}+\frac{5}{(a+b+c)^2-2(ab+bc+ac)}=\frac{3}{ab+bc+ac}+\frac{5}{1-2(ab+bc+ac)}\)

\(=\frac{3}{x}+\frac{5}{1-2x}\) với $x=ab+bc+ac$

Theo BĐT AM-GM:
$1=(a+b+c)^2\geq 3(ab+bc+ac)$

$\Rightarrow x=ab+bc+ac\leq \frac{1}{3}$

Vậy ta cần tìm min $P=\frac{3}{x}+\frac{5}{1-2x}$ với $0< x\leq \frac{1}{3}$

Áp dụng BĐT Bunhiacopxky:

$(\frac{3}{x}+\frac{5}{1-2x})[2x+(1-2x)]\geq (\sqrt{6}+\sqrt{5})^2$

$\Leftrightarrow P\geq (\sqrt{6}+\sqrt{5})^2=11+2\sqrt{30}$

Vậy $P_{\min}=11+2\sqrt{30}$

Giá trị này đạt tại $x=3-\sqrt{\frac{15}{2}}$

18 tháng 1 2023

Con cảm ơn cô ạ

2 tháng 12 2021

Câu 1

\(a+b\ge2\sqrt{ab}\Leftrightarrow ab\le\dfrac{\left(a+b\right)^2}{4}\\ \Leftrightarrow N=ab+\dfrac{1}{16ab}+\dfrac{15}{16ab}\ge2\sqrt{\dfrac{1}{16}}+\dfrac{15}{4\left(a+b\right)^2}\ge\dfrac{1}{2}+\dfrac{15}{4}=\dfrac{17}{4}\)

Dấu \("="\Leftrightarrow a=b=\dfrac{1}{2}\)

Câu 2:

\(P=a+\dfrac{1}{a}+2b+\dfrac{8}{b}+3c+\dfrac{27}{c}+4\left(a+b+c\right)\\ P\ge2\sqrt{1}+2\sqrt{16}+2\sqrt{81}+4\cdot6=2+8+18+4=32\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=2\\c=3\end{matrix}\right.\)

Câu 3: Cho a,b,c là các số thuộc đoạn [ -1;2 ] thõa mãn \(a^2+b^2+c^2=6.\) CMR : \(a+b+c>0\) - Hoc24

NV
16 tháng 1 2021

Chắc chắn đây không phải là 1 đề bài chính xác

16 tháng 1 2021

\(P=\dfrac{a^2}{b^2}+\dfrac{b^2}{a^2}-\dfrac{2a}{b}-\dfrac{2b}{a}-1\)

NV
11 tháng 6 2021

Đề bài sai, bạn có thể thử kiểm tra với \(a=1.0001\) và \(b=0.9999\)

NV
9 tháng 3 2023

\(\left(a+b\right)^2\ge4ab=4\Rightarrow a+b\ge2\)

\(P=\dfrac{a^4}{a+ab}+\dfrac{b^4}{b+ab}\ge\dfrac{\left(a^2+b^2\right)^2}{a+b+2ab}=\dfrac{\left(a^2+b^2\right)\left(a^2+b^2\right)}{a+b+2}\)

\(\ge\dfrac{\dfrac{1}{2}\left(a+b\right)^2.2ab}{a+b+2}=\dfrac{\left(a+b\right)^2}{a+b+2}=\dfrac{\dfrac{1}{4}\left(a+b\right)^2+\dfrac{3}{4}\left(a+b\right)^2}{a+b+2}\)

\(\ge\dfrac{\dfrac{1}{4}\left(a+b\right)^2+3ab}{a+b+2}=\dfrac{\dfrac{1}{4}\left(a+b\right)^2+1+2}{a+b+2}\)

\(\ge\dfrac{2\sqrt{\dfrac{1}{4}\left(a+b\right)^2.1}+2}{a+b+2}=\dfrac{a+b+2}{a+b+2}=1\)

Dấu = xảy ra khi \(a=b=1\)

6 tháng 2 2021

cái kia là \(3\sqrt{\dfrac{1}{a}+\dfrac{9}{b}+\dfrac{25}{c}}\)

NV
7 tháng 2 2021

\(\left(a^2+\dfrac{b^2}{3}+\dfrac{c^2}{5}\right)\left(1+3+5\right)\ge\left(a+b+c\right)^2\)

\(\Rightarrow3\sqrt{a^2+\dfrac{b^2}{3}+\dfrac{c^2}{5}}\ge a+b+c\)

\(\Rightarrow P\ge\dfrac{2}{3}\left(a+b+c\right)+3\sqrt{\dfrac{1}{a}+\dfrac{3^2}{b}+\dfrac{5^2}{c}}\)

\(\Rightarrow P\ge\dfrac{2}{3}\left(a+b+c\right)+3\sqrt{\dfrac{\left(1+3+5\right)^2}{a+b+c}}=\dfrac{2}{3}\left(a+b+c\right)+\dfrac{27}{\sqrt{a+b+c}}\)

\(\Rightarrow P\ge\dfrac{1}{2}\left(a+b+c\right)+\dfrac{27}{2\sqrt{a+b+c}}+\dfrac{27}{2\sqrt{a+b+c}}+\dfrac{1}{6}\left(a+b+c\right)\)

\(\Rightarrow P\ge3\sqrt[3]{\dfrac{27^2\left(a+b+c\right)}{2^3\left(a+b+c\right)}}+\dfrac{1}{6}.9=15\)

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(1;3;5\right)\)

21 tháng 8 2021

mong mn giúp mk vs