K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2023

\(\dfrac{1}{2}\) \(\times\) ( \(x\) - \(\dfrac{2}{3}\)) - \(\dfrac{1}{3}\) \(\times\) ( 2\(x\)  - 3) = \(x\)

\(\dfrac{1}{2}\)  \(\times\) \(\dfrac{3x-2}{3}\) -   \(\dfrac{2x-3}{3}\) = \(x\)

\(\dfrac{3x-2}{6}\) - \(\dfrac{4x-6}{6}\) = \(\dfrac{6x}{6}\)

3\(x-2-4x\) + 6 = 6\(x\) 

-\(x\) + 4 - 6\(x\) = 0

7\(x\)  = 4

    \(x\) =  \(\dfrac{4}{7}\) 

21 tháng 2 2021

Bn thông cảm.Bài này mn ko bt làm

1 tháng 7 2016

\(2x^4-x^3+2x^2+1=2x^4-2x^3+2x^2+x^3-x^2+x+x^2-x+1\\ \)

\(=2x^2\left(x^2-x+1\right)+x\left(x^2-x+1\right)+\left(x^2-x+1\right)=\left(x^2-x+1\right)\left(2x^2+x+1\right)\)

Vậy a = 2; b = 1; c = 1.

1 tháng 7 2016

Làm rõ hơn đi bạn

3 tháng 8 2017

kho lam cung de

1 tháng 8 2016
Câu a: x=1 Câu b: đễ thấy là phương trình bậc 2 với 1 ẩn. Giải bình thường là ra
19 tháng 8 2016

a) = x3 + 9x2 + 27x + 27 - 9x3 -6x2 - x + 8x3 +1 -3x2 =54

26x +28 = 54

26x = 54-28 = 26

x = 1

b) = x3 - 9x2 + 27x -27 - x3 +27 +6x2 + 12x + 6 +3x2 = -33

39x +6 = -33

39x = -33-6 = -39

x = -1

2 tháng 5 2017

Bạn cho từng cái ngoặc ở mỗi câu bằng 0 là được mà.

Còn câu c thì tách ra như sau: x(x-2) = 0 rồi cũng làm tương tự 2 câu kia.

2 tháng 5 2017

a) Ta có: \(\left(2x-1\right)\left(5-x\right)=0\)

\(\Rightarrow\orbr{\begin{cases}2x-1=0\\5-x=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}2x=1\\x=5\end{cases}}\)  \(\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=5\end{cases}}\)

Vậy \(x=\frac{1}{2};x=5\) là \(n_o\) của đa thức.

b,c,d làm t/tự.

19 tháng 6 2019

a) \(x+xy-y=8\)

\(\Leftrightarrow x.\left(1+y\right)-y=8\)

\(\Leftrightarrow x.\left(1+y\right)-y-1=8-1\)

\(\Leftrightarrow x.\left(1+y\right)-\left(1+y\right)=7\)

\(\Leftrightarrow\left(1+y\right).\left(x-1\right)=7\)

Lập bảng tìm tiếp

19 tháng 6 2019

b) Ta có: \(\hept{\begin{cases}\left(x+2\right)^2\ge0\forall x\\\left(2y-6\right)^4\ge0\forall x\end{cases}}\)

\(\Rightarrow\left(x+2\right)^2+\left(2y-6\right)^4\ge0\forall x\)

Do đó \(\left(x+2\right)^2+\left(2y-6\right)^4=0\)

\(\Leftrightarrow\hept{\begin{cases}\left(x+2\right)^2=0\\\left(2y-6\right)^4=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=3\end{cases}}}\)

Vậy ...