K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: góc OMP=góc ONP=90 độ

=>OMNP nội tiếp

b: MP//OC(cùng vuông góc AB)

=>góc MCO=góc NMP

góc NMP=góc MNO

=>góc MNO=góc MCO

=>góc MNO=góc ODN

=>CM//OP

Xét tứ giác CMPO có

CM//PO

CO//PM

=>CMPO là hình bình hành

c: Xét ΔCOM vuông tại O và ΔCND vuông tại N có

góc OCM chung

=>ΔCOM đồng dạng với ΔCND

=>CO/CN=CM/CD

=>CN*CM=CO*CD=2R^2 ko phụ thuộc vào vị trí của M

1: góc OMP=góc ONP=90 độ

=>OMNP nội tiếp

2: Xet ΔCOM vuông tại O và ΔCND vuôngtại N có

góc OCM chung

=>ΔCOM đồng dạngvới ΔCND

=>CO/CN=CM/CD

=>CM*CN=CO*CD=2R^2

2 tháng 6 2017

1. Ta có ÐOMP = 900 ( vì PM ^ AB ); ÐONP = 900 (vì NP là tiếp tuyến ).

Như vậy M và N cùng nhìn OP dưới một góc bằng 900 => M và N cùng nằm trên đường tròn  đường kính OP => Tứ giác OMNP nội tiếp.

2. Tứ giác OMNP nội tiếp => ÐOPM = Ð ONM (nội tiếp chắn cung OM)

 Tam giác  ONC cân tại O vì có ON = OC = R => ÐONC = ÐOCN

=>  ÐOPM = ÐOCM.

Xét hai tam giác  OMC và MOP ta có ÐMOC = ÐOMP = 900; ÐOPM = ÐOCM => ÐCMO = ÐPOM lại có MO là cạnh chung => DOMC = DMOP => OC = MP. (1)

Theo giả thiết Ta có CD ^ AB; PM ^ AB => CO//PM (2).

Từ (1) và (2) => Tứ giác CMPO là hình bình hành.

3. Xét hai tam giác OMC và NDC ta có ÐMOC = 900 ( gt CD ^ AB); ÐDNC = 900 (nội tiếp chắn nửa đường tròn ) => ÐMOC =ÐDNC = 900 lại có ÐC là góc chung => DOMC ~DNDC

=>  => CM. CN = CO.CD mà CO = R; CD = 2R nên CO.CD = 2R2 không đổi => CM.CN =2R2không đổi hay tích CM. CN không phụ thuộc vào vị trí của điểm M.

.

30 tháng 12 2021

a: Xét (O) có

ΔABC nội tiếp

AB là đường kính

Do đó: ΔABC vuông tại C

6 tháng 6 2021

Vì `hat{ACB},hat{ADB}` là 2 góc chẵn nửa (O)
`=>hat{ACB}=hat{ADB}=90^o`
`=>hat{ICM}=hat{IDM}=90^o`
`=>hat{ICM}+hat{IDM}=180^o`
`=>` tg CIDM nt
Vì `MH bot AB`
`=>hat{MHB}=90^o`
`=>hat{MCB}=hat{MHB}=90^o`
`=>` tg CHBD nt (2 đỉnh kề nhau dưới 1 góc không đổi)