câu 13: (3 điểm )
a) tìm giá trị lớn nhất của biểu thức A=\(\dfrac{x^2+y^2+5}{x^2+y^2+3}\)
b) chứng minh rằng: nếu n ϵ N và ƯCLN (6,n)=1thì (n-1)(n+1) ⋮ 24
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
sao dài thế @@ chộp bài nào làm bài nấy ha
Câu 1:
Giả sử \(\sqrt{7}\) là số hữu tỉ thì \(\sqrt{7}=\frac{a}{b}\) với \(\frac{a}{b}\) là phân số tối giản, a;b thuộc Z, b khác 0
\(\frac{a}{b}=\sqrt{7}\Rightarrow\left(\frac{a}{b}\right)^2=7\Rightarrow\frac{a^2}{b^2}=7\Rightarrow a^2=7b^2\)=> a2 chia hết cho 7 (1)
=> a chia hết cho 7 => a=7k với k thuộc Z
Thay a=7k vào a2=7b2 ta được 49k2=7b2 => 7k2=b2 => b2 chia hết cho 7 => b chia hết cho 7 (2)
Từ (1) và (2) => phân số a/b chưa tối giản trái với giả thiết ban đầu
=>\(\sqrt{7}\) là số vô tỉ (đpcm)
Câu 1:
Giả sử \(\sqrt{7}\) là số hữu tỉ \(\Rightarrow\sqrt{7}=\frac{m}{n}\) (tối giản)
\(\Rightarrow7=\left(\frac{m}{n}\right)^2=\frac{m^2}{n^2}\) Hay \(7n^2=m^2\left(1\right)\)
Đẳng thức này chứng tỏ \(m^2⋮7\) Mà \(7\) là số nguyên tố nên \(m⋮7\)
Đặt \(m=7k\left(k\in Z\right)\) ta có: \(m^2=49k^2\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) suy ra: \(7n^2=49k^2\) nên \(n^2=7k^2\left(3\right)\)
Từ \(\left(3\right)\) ta lại có: \(n^2⋮7\) và vì \(7\) là số nguyên tố nên \(n⋮7\)
\(\Rightarrow\hept{\begin{cases}m⋮7\\n⋮7\end{cases}}\) nên phân số \(\frac{m}{n}\) không tối giản, trái với giả thiết
Vậy \(\sqrt{7}\) không phải là số hữu tỉ
\(\Leftrightarrow\sqrt{7}\) là số vô tỉ (Điều phải chứng minh)
Bài 4 :
Thay x=y+5 , ta có :
a ) ( y+5)*(y5+2)+y*(y-2)-2y*(y+5)+65
=(y+5)*(y+7)+y^2-2y-2y^2-10y+65
=y^2+7y+5y+35-y^2-2y-2y^2-10y+65
= 100
Bài 5 :
A = 15x-23y
B = 2x-3y
Ta có : A-B
= ( 15x -23y)-(2x-3y)
=15x-23y-2x-3y
=13x-26y
=13x*(x-2y) chia hết cho 13
=> Nếu A chia hết cho 13 thì B chia hết cho 13 và ngược lại
Câu 1: xin sửa đề :D
CM: \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1\)là 1 scp
\(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1\)
\(=\left(n^2+3n\right)\left(n^2+3n+2\right)+1\)
\(=\left(n^2+3n\right)^2+2\left(n^2+3n\right)+1\)
\(=\left(n^2+3n+1\right)^2\)là scp
1) ( x - y)2 - ( x + y)2 = -4xy
\(\Leftrightarrow\)( x - y - x + y ) ( x - y + x + y ) = -4xy
\(\Leftrightarrow\)2x + 4xy = 0
\(\Leftrightarrow\)2x ( 1 + 2y ) = 0
\(\Leftrightarrow\)\(\left[{}\begin{matrix}2x=0\\1+2y=0\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left[{}\begin{matrix}0\\-\dfrac{1}{2}\end{matrix}\right.\)
2) ( 7n -2)2 - ( 2n - 7)2
= ( 7n - 2 - 2n - 7 )( 7n - 2 + 2n - 7 )
= ( 5n - 9 )( 9n - 9 )
Ta có: 9n \(⋮\) 9 với mọi n
9 \(⋮\) 9 với mọi n
\(\Rightarrow\)9n - 9 \(⋮\) 9 với mọi n
\(\Rightarrow\) đpcm
3) F = x2 + 6x + 1
F = x2 + 2.x.3 + 9 - 8
F = ( x + 3 )2 - 8
Vì ( x + 3)2 \(\ge\) 0 với mọi x
\(\Rightarrow\) ( x + 3 )2 - 8 \(\ge\) -8 với mọi x
\(\Rightarrow\) F \(\ge\) -8 với mọi x
Vậy min F = -8 \(\Leftrightarrow\) ( x + 3 )2 = 0
\(\Leftrightarrow\) x = -3
1. Ta có: \(\left(x-y\right)^2-\left(x+y\right)^2=\left(x-y+x+y\right)\left(x-y-x-y\right)=2x.\left(-2y\right)=-4xy\)
2. Ta có: \(\left(7n-2\right)^2-\left(2n-7\right)^2=\left(7n-2-2n+7\right)\left(7n-2+2n-7\right)=\left(5n+5\right)\left(9n-9\right)=9\left(n-1\right)\left(5n+5\right)\)
\(\Rightarrow\left(7n-2\right)^2-\left(2n-7\right)^2\) chia hết cho 9 với mọi giá trị nguyên của n.
3. Ta có: \(F=-x^2+6x+1=-\left(x^2-6x-1\right)=-\left(x^2-6x+9-10\right)=-\left(x-3\right)^2+10\)
Vì \(-\left(x-3\right)^2\le0\Rightarrow-\left(x-3\right)^2+10\le10\)
=> MaxF=10 <=> \(-\left(x-3\right)^2+10=10\Leftrightarrow-\left(x-3\right)^2=0\Leftrightarrow\left(x-3\right)^2=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)
Vậy MaxF=10 khi x=3.
4. Ta có: \(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax+by\right)^2\Leftrightarrow a^2x^2+a^2y^2+b^2x^2+b^2y^2=a^2x^2+2axby+b^2y^2\Leftrightarrow a^2x^2+a^2y^2+b^2x^2+b^2y^2-a^2x^2-2abxy-b^2y^2=0\Leftrightarrow a^2y^2+b^2x^2-2abxy=0\Leftrightarrow\left(ay-bx\right)^2=0\Leftrightarrow ay-bx=0\)
=> đpcm.
CÂU 10:
a, -x - 84 + 214 = -16 b, 2x -15 = 40 - ( 3x +10 )
x = - ( -16 -214 + 84 ) 2x + 3x = 40 -10 +15
x = 16 + 214 - 84 5x = 45
x = 146 x = 9
c, \(|-x-2|-5=3\) d, ( x - 2)(2x + 1) = 0
\(|-x-2|=8\) => x - 2 = 0 hoặc 2x + 1 = 0
=> - x - 2 = 8 hoặc x + 2 = 8 \(\orbr{\begin{cases}x-2=0\\2x+1=0\end{cases}=>}\orbr{\begin{cases}x=2\\x=-\frac{1}{2}\end{cases}}\)
\(\orbr{\begin{cases}-x-2=8\\x+2=8\end{cases}=>\orbr{\begin{cases}x=-10\\x=6\end{cases}}}\)
a) Ta có : \(A=\dfrac{x^2+y^2+5}{x^2+y^2+3}=1+\dfrac{2}{x^2+y^2+3}\)
Dễ thấy \(x^2\ge0;y^2\ge0\forall x;y\)
nên \(x^2+y^2+3\ge3\)
\(\Leftrightarrow\dfrac{1}{x^2+y^2+3}\le\dfrac{1}{3}\)
<=> \(\dfrac{2}{x^2+y^2+3}\le\dfrac{2}{3}\)
\(\Leftrightarrow A=1+\dfrac{2}{x^2+y^2+3}\le\dfrac{5}{3}\)
\(\Rightarrow A_{max}=\dfrac{5}{3}\)(Dấu "=" xảy ra khi x = y = 0)
phần b) nữa bạn SOS