Cho tập A = {1,2,...,2023}. Chọn ra 869 số tự nhiên phân biệt từ tập A. Chứng minh rằng trong các số được chọn, ta có thể tìm được hai số a,b sao cho a+b là một bội của 7. tôi đang cần gấp mọi người giúp nhé.Ai xong trước tôi cho 1 like
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn A
Số phần tử của A là A 9 4 = 3024 số.
Số phần tử của không gian mẫu là n ( Ω ) = 3024
Gọi A là biến cố: “Chọn được một số chia hết cho 11 và tổng bốn chữ số của nó chia hết cho 11”.
Xét số tự nhiên có 4 chữ số có dạng
Theo bài ra ta có: và
Suy ra
Trong các chữ số 1;2;3;4;5;6;7;8;9 có các bộ số mà tổng chia hết cho 11 là
Chọn 2 cặp trong 4 cặp số trên để tạo số
Chọn {a;c} có 4 cách, chọn {b;d} có 3 cách, sau đó sắp thứ tự các số a, b, c, d. Ta được 4.3.2.2 = 48
Suy ra n(A) = 48
Gọi số đó là \(\overline{abc}\)
Không gian mẫu: \(6.6.5=180\)
a. TH1: \(c=0\Rightarrow ab\) có \(A_6^2\) cách
TH2: \(c\ne0\Rightarrow c\) có 3 cách chọn, ab có \(5.5=25\) cách
Xác suất: \(P=\dfrac{3.25+A_6^2}{180}=\)
b. Tổng 3 chữ số chia hết cho 3 khi 3 số đồng dư khi chia 3 hoặc 3 số đôi một khác số dư khi chia 3.
- 3 số đồng dư khi chia cho 3: \(3!-2!=4\) số
- 3 số chia 3 có 3 số dư khác nhau:
+ Không có mặt số 0: \(C_2^1C_2^1C_2^1.3!=48\)
+ Có mặt số 0: \(C_2^1C_2^1C_2^1\left(3!-2!\right)=32\)
Xác suất: \(P=\dfrac{4+48+32}{180}=...\)
Chọn A
Vì là tập tất cả các số tự nhiên có 5 chữ số nên
Số phần tử của không gian mẫu là
Gọi X là biến cố: “Chọn được một số chia hết cho 7 và chữ số hàng đơn vị bằng 1 từ tập A”.
có tận cùng bằng 1,do đó với có chữ số tận cùng là 3.
Xét các trường hợp sau:
1) M là số có 4 chữ số có dạng m n p q ¯ Khi đó:
- Với m = 1, do và q = 3 nên n ≥ 4
+) Khi n = 4 thì p > 2 nên p ∈ {4;5;6;7;8;9}. Ta được 6 số thỏa mãn.
+) Khi n ≥ 5: Có 5 cách chọn n thuộc tập hợp {5;6;7;8;9}. Khi đó p ≠ m,n,q nên p có 7 cách chọn. Ta được 35 số thỏa mãn.
- Với m ≥ 2 tức là có 7 cách chọn m từ tập {2;4;5;6;7;8;9}. Khi đó với mọi n,p thuộc tập hợp {0;1;2;4;5;6;7;8;9} và n ≠ p ≠ m, do đó có 8 cách chọn n, có 7 cách chọn p. Ta được 7.8.7 = 392 số thỏa mãn
2) M là số có 5 chữ số có dạng m n p q r ¯ Khi đó: m n p q r ¯ ≤ 14285 và r = 3
Do m n p q r ¯ ≤ 14285 nên m chỉ nhận giá trị bằng 1 và n ≤ 4
- Với m=1; n = 0,2 thì p,q là các số tùy ý thuộc tập {0;2;4;5;6;7;8;9} và p ≠ q ≠ n Ta được 2.7.6 = 84 số thỏa mãn.
- Với m=1; n = 4:
+) Khi p = 0 thì q là số tùy ý thuộc tập {2;5;6;7;8;9}. Ta được 6 số thỏa mãn.
+) Khi p = 2 thì q phải thuộc tập {0;5;6;7;8}. Ta được 5 số thỏa mãn.
Vậy số phần tử của biến cố X là n(X) = 6 + 35 + 392 + 84 + 6 + 5 = 528
Xác suất để chọn được một số chia hết cho 7 và chữ số hàng đơn vị là 1 bằng
Bài 3:
a: \(\dfrac{11}{15}+\dfrac{9}{10}=\dfrac{110+135}{150}=\dfrac{245}{150}=\dfrac{49}{30}\)
b: \(\dfrac{5}{6}+\dfrac{7}{9}+\dfrac{11}{12}=\dfrac{30+28+33}{36}=\dfrac{91}{36}\)