K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABD vuông tại D và ΔACD vuông tại D có

AB=AC

AD chung

=>ΔABD=ΔACD

=>BD=CD

=>D là trung điểm của BC

b: Xét ΔAED vuông tại E và ΔAFD vuông tại F có

AD chung

góc EAD=góc FAD

=>ΔAED=ΔAFD

=>AE=AF 

=>ΔAEF cân tại A

c: CI+2AD

=3IK+2*3/2*AK

=3*(IK+AK)>3AI

Bài 2: 

a: Xét ΔABM có 

D là trung điểm của AB

F là trung điểm của AM

Do đó: DF là đường trung bình của ΔABM

Suy ra: DF//BM và \(DF=\dfrac{BM}{2}\)(1)

hay DF//BC

Xét ΔAMC có 

E là trung điểm của AC

F là trung điểm của AM

Do đó: EF là đường trung bình của ΔAMC

Suy ra: EF//MC và \(EF=\dfrac{MC}{2}\left(2\right)\)

hay EF//BC

Ta có: DF//BC

FE//BC

mà DF,FE có điểm chung là F

nên D,F,E thẳng hàng

b: Ta có: M là trung điểm của BC

nên MB=MC(3)

Từ (1), (2) và (3) suy ra DF=FE

mà D,F,E thẳng hàng

nên F là trung điểm của DE

1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại MA. chứng minh tam giác ABC bằng tam giác MBEB. chứng minh DM vuông góc với BCC .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IACcâu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)A. chứng minh tam giác ABD bằng tam giác ACDB. Vẽ...
Đọc tiếp

1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại M

A. chứng minh tam giác ABC bằng tam giác MBE

B. chứng minh DM vuông góc với BC

C .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IAC

câu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)

A. chứng minh tam giác ABD bằng tam giác ACD

B. Vẽ đường trung tuyến của tam giác ABC cắt cạnh AC tại G. chứng minh G là trọng tâm của tam giác ABC

C. Gọi H là trung điểm của cạnh DC. qua h Vẽ đường thẳng vuông góc với cạnh DC cắt cạnh AC tại E. Chứng minh tam giác DEC cân

D. Chứng minh ba điểm B, G, E thẳng hàng

Câu 3 Cho tam giác ABC vuông tại A. Vẽ trung tuyến AM của tam giác ABC, Kẻ MH vuông góc với AC. Trên tia đối của tia MH đặt điểm  K sao cho MK bằng MH

a. chứng minh tam giác MHC bằng tam giác MKB và BK vuông góc với KH

B. Chứng minh AB song song với HK và BK = AH.

C. Vẽ BH cắt AB tại g. Gọi I là trung điểm của AB. Chứng minh ba điểm C, G, I thẳng hàng

câu4 Cho tam giác ABC vuông tại A. gọi M là trung điểm cạnh BC. trên tia đối của tia MA lấy điểm D sao cho MD = MA.

A . chứng minh tam giác MCD bằng tam giác MBD và AC song song với BD

B. Gọi I là trung điểm AM, J là trung điểm BM. AJ cắt BI tại G. Chứng minh tam giác GAB là tam giác cân

Câu 5 cho tam giác ABC vuông tại A (AB bé hơn AC). vẽ BD là tia phân giác của góc ABC (D thuộc AC). trên đoạn BC lấy điểm E sao cho BE bằng BA

a chứng minh tam giác ABD bằng tam giác EBD .Từ đó suy ra góc BED là góc vuông

b.  tia ED  cắt tia BA tại EF. Chứng minh tam giác BED cân

C. Chứng minh tam giác AFC bằng tam giác  ECF

D.Chứng minh: AB + AC >DE+BC

câu 6: Cho tam giác ABC vuông tại A. Vẽ đường phân phân giác BD của tam giác ABC và E là hình chiếu của D trên BC

a. chứng minh tam giác ABD bằng tam giác EBD và AE vuông góc với BD

B. Gọi giao điểm của hai đường thẳng ED và BA là F. Chứng minh tam giác ABC bằng tam giác AFC 

C. Qua A vẽ đường thẳng vuông góc với BC cắt CF tại G. Chứng minh ba điểm B, D, G thẳng hàng

câu 7: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ AD là phân giác của góc A (D thuộc BC)

A . Chứng minh tam giác ABD bằng tam giác ACD

B. lấy H là trung điểm của AB. Trên tia đối của tia HC lấy điểm K sao cho HK = HC. Chứng minh rằng AK = BC

c. CH cắt AD tại G. Chứng minh (BA+BC)÷6 >GH

4
28 tháng 4 2019

bài 1 đề bài có sai ko?

29 tháng 4 2019

Đề đúng nha bạn

24 tháng 2 2021

a, ΔABD có BA = BD (gt) và ˆABDABD^ = ˆABCABC^ = 60o60o

⇒ ΔABD đều (đpcm)

b, ΔABD đều ⇒ AB = AD

Xét ΔAHB và ΔAHD có:

AH chung; AB = AD (cmt); HB = HD (H là trung điểm của BD)

⇒ ΔAHB = ΔAHD (c.c.c)

⇒ ˆAHBAHB^ = ˆAHDAHD^ mà 2 góc này kề bù

⇒ ˆAHBAHB^ = ˆAHDAHD^ = 90o90o

⇒ AH ⊥ BD (đpcm)

c, ΔABD đều ⇒ AB  = BD = AD = 2cm

⇒ HB = HD = 1cm

⇒ HC = BC - HB = 5 - 1 = 4cm

ΔAHB vuông tại H ⇒ AH = √AB2−HB2AB2−HB2 = √22−1222−12 = √33cm

ΔAHC vuông tại H ⇒ AC = √AH2+HC2AH2+HC2 = √3+423+42 = √1919cm

a) Xét ΔBAD có BA=BD(gt)

nên ΔBAD cân tại B(Định nghĩa tam giác cân)

Xét ΔBAD cân tại B có \(\widehat{ABD}=60^0\)(gt)

nên ΔBAD đều(Dấu hiệu nhận biết tam giác đều)

b) Ta có: ΔBAD đều(cmt)

mà AH là đường trung tuyến ứng với cạnh BD(gt)

nên AH là đường cao ứng với cạnh BD(Định lí tam giác cân)

hay AH\(\perp\)BD(Đpcm)

 

a) Xét ΔAHB vuông tại H và ΔDHB vuông tại H có

BH chung

AH=DH(H là trung điểm của AD)

Do đó: ΔAHB=ΔDHB(hai cạnh góc vuông)

⇒AB=DB(hai cạnh tương ứng)(1)

Xét ΔAMB và ΔEMC có 

AM=EM(M là trung điểm của AE)

\(\widehat{AMB}=\widehat{EMC}\)(hai góc đối đỉnh)

MB=MC(M là trung điểm của BC)

Do đó: ΔAMB=ΔEMC(c-g-c)

⇒AB=EC(hai cạnh tương ứng)(2)

Từ (1) và (2) suy ra BD=CE(đpcm)

b) Ta có: ΔABH=ΔDBH(cmt)

nên \(\widehat{ABH}=\widehat{DBH}\)(hai góc tương ứng)

hay \(\widehat{ABC}=\widehat{DBC}\)

mà tia BC nằm giữa hai tia BA,BD

nên BC là tia phân giác của \(\widehat{ABD}\)(đpcm)

c) Xét ΔACH vuông tại H và ΔDCH vuông tại H có

CH chung

AH=DH(H là trung điểm của AD)

Do đó: ΔACH=ΔDCH(hai cạnh góc vuông)

⇒CA=CD(hai cạnh tương ứng)

Ta có: BA=BD(cmt)

nên B nằm trên đường trung trực của AD(Tính chất đường trung trực của một đoạn thẳng)(3)

Ta có: CA=CD(cmt)

nên C nằm trên đường trung trực của AD(Tính chất đường trung trực của một đoạn thẳng)(4)

Từ (3) và (4) suy ra BC là đường trung trực của AD(đpcm)

d) Xét ΔBME và ΔCMA có 

BM=CM(M là trung điểm của BC)

\(\widehat{BME}=\widehat{CMA}\)(hai góc đối đỉnh)

ME=MA(M là trung điểm của AE)

Do đó: ΔBME=ΔCMA(c-g-c)

⇒BE=CA(hai cạnh tương ứng)

Xét ΔABC và ΔECB có 

BC chung

AB=EC(cmt)

CA=BE(cmt)

Do đó: ΔABC=ΔECB(c-c-c)

29 tháng 1 2022

trẻ trâu

Bạn cần đi bệnh viện hong:)?

a: ΔABM=ΔACM

=>BM=CM

=> M là trung điểm của BC

b: ΔAMC=ΔAMB

=>góc MAC=góc MAB và AC=AB

=>AM là phân giác của góc BAC 

AB=AC

MB=MC

=>AM là trung trực của BC

=>AM vuông góc BC