Một phòng họp có 100 chỗ ngồi,nhưng số người đến họp là 144.Do đó,người ta phải kê thêm 2 dãy ghế và mỗi dãy ghế phải thêm 2 người ngồi.Hỏi phòng họp lúc đầu có mấy dãy ghế?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số dãy là x, số người ngồi trong mỗi dãy là y dk:...
Theo bài ra ra có xy =70 (1)
Nếu ta bớt đi 2 dãy ghế thì mỗi dãy ghế còn lại phải xếp thêm 4 người ngồi mới đủ chỗ
=> (x-2)(y+4) = 70 (2)
Từ (1) và (2) ta có hệ phương trình...................
Giải ra được x = 7 ; y = 10
Cách 2:
Gọi x là số dãy ghế lúc đầu (Đk:x và x là ước của 250, dãy)
Số chỗ ngồi ở mỗi dãy lúc đầu: 250/x (chỗ)
Số dãy ghế lúc sau là x + 3 (dãy). Số chỗ ngồi lúc sau: 308/(x+3) (chỗ).
Vì mỗi dãy ghế phải kê thêm 1 chỗ ngồi nữa thì vừa đủ ta có PT:
308/(x+3)-250/x=1↔x^2-55x+750=0↔[█(x_1=30 (loại) vì 250 không chia hết cho 30@x_2=25 (nhận))┤
Vậy lúc đầu có 25 dãy ghế. Mỗi dãy ghế có 10 chỗ ngồi.
Cách 1:
Gọi x là số dãy ghế lúc đầu; y là số người trên mỗi dãy ghế lúc đầu (x,y>0)
Ta có tổng cộng 250 người nên x.y =250 (1)
Nếu thêm 3 dãy ghế tức x + 3 thì mỗi dãy còn lại phải xếp thêm 1 người tức y + 1
Ta có: (x+3).(y+1) = 250 (2)
Từ (1) và (2) ta có hệ:
Vậy lúc đầu có 25 dãy ghế. Mỗi dãy ghế có 10 chỗ ngồi.
Gọi số dãy lúc đầu là x
Theo đề, ta có: 70/(x-2)-70/x=4
=>(70x-70x+140)/(x^2-2x)=4
=>4x^2-8x-140=0
=>x=7
Gọi số dãy ghế lúc đầu là x(x \(\in\) N* , x > 0)
Số ghế mỗi dãy: \(\dfrac{70}{x}\) (ghế)
Nếu bớt đi 2 dãy ghế ngồi thì mỗi dãy còn lại phải xếp thêm 4 người mới đủ chỗ ngồi.
\(\Rightarrow\left(x-2\right)\left(\dfrac{70}{x}+4\right)=70\)
\(\Rightarrow4x-\dfrac{140}{x}+62=70\)
\(\Rightarrow4x^2-140+62x=70x\) (do x \(\in\) N* )
\(\Rightarrow4x^2-8x-140=0\)
\(\Rightarrow x=-5\left(l\right);x=7\left(n\right)\)
Vậy lúc đầu phòng họp có 7 dãy ghế.
deo biet tu tra loi
gọi số dãy ghế là x
theo đề bài ta có phương trình (x+2)*(100/x+2)=144
giải ra ta được x=10