K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2017

Nhận xét về dãy số. Ta thấy rằng dã số này thì có 2 tính chất cần chú ý.

Thứ 1: Số hạng thứ n là tổng của n số lẻ liên tiếp.

Thứ 2: Số bé nhất trong n số của số hạng n sẽ có dạng: \(2k+1\)(với k là tổng số chữ số của (n - 1) số hạn trước đó:

(Ví dụ: Số hạng thứ 5 trong dãy sẽ có \(k=1+2+3+4=10\)sợ you không hiểu chỗ này nên cho ví dụ đấy)

Giờ ta chứng minh với n bất kỳ thì dãy này luôn đúng yêu cầu bài toán:

Xét số thứ n trong dãy:

Ta có \(k=1+2+...+\left(n-1\right)=\frac{n\left(n-1\right)}{2}\)

Số hạng thứ n của dãy sẽ là: \(\left(2k+1\right)+\left(2k+3\right)+...+\left(2k+1+2\left(n-1\right)\right)\)

\(=2kn+\left(1+3+...+\left(2n-1\right)\right)\)

\(=2kn+n^2\)

\(=2.\frac{n\left(n-1\right)}{2}.n+n^2=n^2\left(n-1+1\right)=n^3\)

Vậy bài toán đã được chứng minh.

\(1=1^3\)

\(3+5=8=2^3\)

\(7+9+11=27=3^3\)

\(13+15+17+19=64=4^3\)

\(21+23+25+27+29=125=5^3\)

28 tháng 11 2017

\(A=\left(x-1\right)\left(x+1\right)=x^2-1\)

\(B=\left(x-2y\right)\left(x+2y\right)=x^2-4y^2\)

\(C=\left(3x^2-2y\right)\left(3x^2+2y\right)=9x^4-4y^2\)