So sánh : a) A = 2001 + 2002 / 2002 + 2003 và B = 2001/2002 + 2002/ 2003
b) A = 2006^2006 + 1/2006^2007 +1 và B = 2006^2005 + 1/2006^2006 + 1
c ) A = 1999^1999 + 1/1999^2000 + 1 và B = 1999^1989 + 1/1999^2009 + 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{2002}{2001}+\frac{2003}{2002}+\frac{2004}{2003}+\frac{2005}{2004}+\frac{2006}{2005}+\frac{2007}{2006}+\frac{2008}{2007}+\frac{2009}{2008}>\frac{2001}{2001}+\frac{2002}{2002}+\frac{2003}{2003}+\frac{2004}{2004}+\frac{2005}{2005}+\frac{2006}{2006}+\frac{2007}{2007}+\frac{2008}{2008}\)
\(A=\frac{2002}{2001}+\frac{2003}{2002}+\frac{2004}{2003}+\frac{2005}{2004}+\frac{2006}{2005}+\frac{2007}{2006}+\frac{2008}{2007}+\frac{2009}{2008}>1+1+1+1+1+1+1+1\)\(A=\frac{2002}{2001}+\frac{2003}{2002}+\frac{2004}{2003}+\frac{2005}{2004}+\frac{2006}{2005}+\frac{2007}{2006}+\frac{2008}{2007}+\frac{2009}{2008}>8\)
\(A>8\)
mỗi số hạng trong biểu thức A đều nhỏ hơn 1 mà có 15 số nên tổng A sẽ nhỏ hơn 15
ta thay tong tren <1+1+1+1+1+1+1+1+1+1+1+1+1+1+1
hay tong tren be hon 15
=1+1/2001+1+1/2002+1+1/2003+...+1+1/2008=8+1/2001+1/2002+1/2003+...+1/2008>8
\(\frac{2002}{2001}+\frac{2003}{2002}+\frac{2004}{2003}+\frac{2005}{2004}+\frac{2006}{2005}+\frac{2007}{2006}+\frac{2008}{2007}+\frac{2009}{2008}>8\)
a) 1-2-3+4+5-6-7+8+...+2001-2002-2003+2004
S = (1+2-3+4) + (5+6-7-8) + ... + (2001+2002-2003-2004) + (2005+2006)
S = (-4) + (-4) + ... + (-4) + (2005+2006)
dãy S có 2004 - 1 : 1 + 1 = 2004 số hạng
dãy S có 2004 : 4 = 501 chữ số (-4)
do đó S = -4. 501 = -2004
S = -2004 + (2005+2006)
S = -2004 + 4011
S = 2007
b) tương tự nhé!!
675676587689689
a) Nhóm 4 số hạng liên tiếp từ đầu dãy:
A = (1-2-3+4)+(5-6-7+8)+(9-10-11+12)+ ...+(2001-2002-2003+2004) = 0
b) Nhóm 4 số hạng liên tiếp bắt đầu từ số thứ 2:
B = 1+(2-3-4+5)+(6-7-8+9)+...+(2002-2003-2004+2005)+2006 = 1+2006 = 2007.
B = \(\frac{2001}{2002}+\frac{2002}{2003}\)
có: \(\frac{2000}{2001}>\frac{2000}{2001}+2002\)
\(\frac{2001}{2002}>\frac{2001}{2001}+2002\)
Vậy A>B