1) Chứng tỏ rằng: 817 _ 279 _ 913 chia hết cho 405.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
81^7 - 27^9 - 9^13
= (3^4)^7 - (3^3)^9 - (3^2)^13
= 3^28 - 3^27 - 3^26
= (3^26.3^2) - (3^26.3^1) - (3^26.1)
= 3^26.(9 - 3 - 1)
= 3^22.(3^4.5)
= 3^22.405 chia hết cho 405
=> 81^7 - 27^9-9^13 chia hết cho 405
a) \(7^6+7^5-7^4=7^4\left(7^2+7-1\right)=7^4\left(49+7-1\right)=7^4.55⋮55\)
b) \(16^5+2^{15}=\left(2^4\right)^5+2^{15}=2^{20}+2^{15}=2^{15}\left(2^5+1\right)=2^{15}\left(32+1\right)=2^{15}.33⋮33\)
c) \(81^7-27^9-9^{13}=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}=3^{28}-3^{27}-3^{26}=3^{26}\left(3^2-3-1\right)=3^{26}.5=3^{22}.3^4.5=3^{22}.405⋮405\)
a: \(=7^4\left(7^2+7-1\right)=7^4\cdot55⋮55\)
b: \(=2^{20}+2^{15}=2^{15}\left(2^5+1\right)=2^{15}\cdot33⋮33\)
c: \(=3^{28}-3^{27}-3^{26}=3^{26}\left(3^2-3-1\right)=3^{26}\cdot5=3^{22}\cdot405⋮405\)
Ta có:
A=405n + 2405 + m2
A=405n + (25)81 + m2
A=405n + 3281 + m2
Lại có:
+ Với n thuộc N và n khác 0 thì 405n luôn có chữ số tận cùng là 5. (1)
+ 3281 luôn có chữ số tận cùng là 2. (2)
+ Với m thuộc N thì m2 luôn có chữ số tận cùng là 0, 1, 4, 9, 6, 5. (3)
Từ (1), (2) và (3) suy ra 405n + 3281 + m2 có chữ số tận cùng là 7, 8, 1, 6, 3, 2.
Do đó 405n + 2405 + m2 có chữ số tận cùng là 7, 8, 1, 6, 3, 2.
Mà các số chia hết cho 10 khi và chỉ khi có chữ số tận cùng là 0 nên 405n + 2405 + m2 không chia hết cho 10.
Vậy A không chia hết cho 10 (đpcm).
3x = 81
<=> x=4
b) x2=81
<=> x = 9;-9
c) (2x+3)3=125
<=> (2x+3)3=53
<=> 2x+3 = 5
<=> 2x=2
<=> x=1
d) (2x-3)4 = 625
<=>(2x-3)4=54
<=> 2x-3=5
<=> 2x=8
<=> x=4
\(81^7-27^9-9^{13}=3^{4.7}-3^{3.9}-3^{2.13}=3^{28}-3^{27}-3^{26}\)
\(=3^{26}\left(3^2-3-1\right)=3^{26}.5=3^{22}.3^4.5=3^{22}.81.5=405.3^{22}\)
Chia hết cho 405 => ĐPCM
817= (34)7 = 34.7