Cho S là tập hợp các số nguyên dương n có dạng n = x2+3y2 , trong đó x, y là các số nguyên. Chứng minh rằng nếu A ϵ S và A là số chẵn thì A chia hết cho 4 và A/4 ϵ S.
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
20 tháng 6 2023
`@` `\text {Ans}`
`\downarrow`
`a)`
`A = {x \in N` `|` `x*2=5}`
`x*2 = 5`
`=> x=5 \div 2`
`=> x=2,5`
Vậy, số phần tử của tập hợp A là 1 (pt 2,
`b)`
`B = {x \in N` `|` `x+4=9}`
`x+4=9`
`=> x=9-4`
`=> x=5`
`=>` phần tử của tập hợp B là 5
Vậy, số phần tử của tập hợp B là 1.
`c)`
`C = {x \in N` `|` `2<x \le 100}`
Số phần tử của tập hợp C là:
`(100 - 2) \div 2 + 1 = 50 (\text {phần tử})`
Vậy, tập hợp C gồm `50` phần tử.
A thuộc S thì A=x^2+3y^2
Nếu x chia hết cho 2 thì từ N chẵn, ta có y chia hết cho 2
=>N/4 thuộc S
Nếu x,y lẻ thì x^2-9y^2 đồng dư ra 1-9=0 mod 8
=>x-3y chia hết cho4 hoặc x+3y chia hết cho 4
Nếu x-3y chia hết cho 4 thì A/4=(x-3y/4)^2+3(x+y/4)^2
=>A/4 thuộc S
Chứng minh tương tự, ta cũng được nếu x+3y chia hết cho 4 thì A/4 cũng thuộc S
=>ĐPCM