2 người thợ cùng làm chung 1 cv trong 7h12p thì xong. Nếu người thứ nhất làm trong 6h và người thứ hai làm trong 3h thì được ⅔ cv. Hỏi nếu làm riêng mỗi người xông cv trong bao lâu?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi thời gian làm riêng của người 1 và người 2 lần lượt là a,b
Theo đề, ta có:
8/a+8/b=1/2 và 3/a+6/b=1/4
=>a=24 và b=48
Trong1h người 1 làm được 1/15(công việc)
=>Trong 6h thì người 1 làmd dược 6/15=2/5(công việc)
Gọi thời gian làm riêng của người 2 là x
Theo đề, ta có: 3/15+3/x=3/5
=>1/x=1/5-1/15=2/15
=>x=7,5
Gọi `x(h,x>0)` là thời gian một mình người thứ hai làm công việc.
Trong `1h` người thứ `2` làm được: `1/x(` công việc `)`
Trong một giờ người thứ nhất làm được: `1/15(` công việc `)`
Theo đề bài ta có:
`6/15+3(1/15+1/x)=1`
`3/5+3/x=1`
`1/5+1/x=1/3`
`1/x=2/15`
`x=15/2=7,5(TM)`
Vậy người thứ hai làm một mình để xong công việc hết `7,5h`
Mình xin làm lại
Giải
Thời gian của hai công nhân đó là
3 + 2 \(=\)5 giờ
Tỉ số phần trăm công việc của hai công nhân là
40 \(\div\) 100 \(=\) 0,4 công việc
Nếu làm một mình thì mỗi người cần số thời gian là
5 \(\div\) 0,4 \(=\) 12,5 giờ
Đổi \(=\)
Lưu ý đổi bạn tự là
Mình sợ sai lắm . Mình sắp lên lớp 6
Chúc bạn Thu Hằng học giỏi
Nếu làm 1 mình để xong công việc thì mỗi người cần số thờ gian là
\(2+3=5\)giờ
Đáp số 5 giờ
Không biết có đúng không mình mới sắp lên lớp 6
Gọi a(giờ) là thời gian người thứ nhất hoàn thành công việc khi làm một mình
Gọi b(giờ) là thời gian người thứ hai hoàn thành công việc khi làm một mình
(Điều kiện: a>16; b>16)
Trong 1 giờ, người thứ nhất làm được: \(\dfrac{1}{a}\)(công việc)
Trong 1 giờ, người thứ hai làm được: \(\dfrac{1}{b}\)(công việc)
Trong 1 giờ, hai người làm được: \(\dfrac{1}{16}\)(công việc)
Do đó, ta có phương trình: \(\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{16}\)(1)
Vì nếu người thứ nhất làm 3h và người thứ hai làm 6h thì được 25% công việc nên ta có phương trình:
\(\dfrac{3}{x}+\dfrac{6}{y}=\dfrac{1}{4}\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{16}\\\dfrac{3}{a}+\dfrac{6}{b}=\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{a}+\dfrac{3}{b}=\dfrac{3}{16}\\\dfrac{3}{a}+\dfrac{6}{b}=\dfrac{1}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-3}{b}=\dfrac{-1}{16}\\\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{16}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=48\\\dfrac{1}{a}+\dfrac{1}{48}=\dfrac{1}{16}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{a}=\dfrac{1}{24}\\b=48\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=24\\b=48\end{matrix}\right.\)(thỏa ĐK)
Vậy: Người thứ nhất cần 24 giờ để hoàn thành công việc khi làm một mình
Người thứ hai cần 48 giờ để hoàn thành công việc khi làm một mình
Gọi x giờ là thời gian hoàn thành công việc của người thợ thứ nhất khi làm một mình, tương tự y giờ là của người thứ hai (x và y là các số dương) => trong 1 giờ người thứ nhất làm được 1/x công việc người thứ hai làm được 1/y công việc => Trong 1 giờ hai người cùng làm được: 1/x + 1/y = 1/16 (1) Trong 3 giờ người thứ nhất làm được 3/x công việc
trong 6 giờ người thứ hai làm được 6/y công việc => Hai người đã làm: 3/x + 6/y = 25% = 1/4 (2) Từ (1) và (2) ta có hệ phương trình; {1/x + 1/y = 1/16 {3/x + 6/y = 1/4 Đặt 1/x = u và 1/y = v ta có: {u + v = 1/16 {3u + 6v = 1/4 Giải hệ phương trình này ta có: u = 1/24 v = 1/48 Vì 1/x = u => 1/x = 1/24 => x = 24 (thoả) Vì 1/y = v => 1/y = 1/48 => y = 48 (thoả) => Nếu làm riêng thì người thứ nhất phải làm trong 24 giờ người thứ hai phải làm trong 48 giờ.
Gọi x giờ là thời gian hoàn thành công việc của người thợ thứ nhất khi làm một mình, tương tự y giờ là của người thứ hai (x và y là các số dương)
=> trong 1 giờ người thứ nhất làm được 1/x công việc
người thứ hai làm được 1/y công việc
=> Trong 1 giờ hai người cùng làm được: 1/x + 1/y = 1/16 (1)
Trong 3 giờ người thứ nhất làm được 3/x công việc
trong 6 giờ người thứ hai làm được 6/y công việc
=> Hai người đã làm: 3/x + 6/y = 25% = 1/4 (2)
Từ (1) và (2) ta có hệ phương trình;
{1/x + 1/y = 1/16
{3/x + 6/y = 1/4
Đặt 1/x = u và 1/y = v ta có:
{u + v = 1/16
{3u + 6v = 1/4
Giải hệ phương trình này ta có:
u = 1/24
v = 1/48
Vì 1/x = u => 1/x = 1/24 => x = 24 (thoả)
Vì 1/y = v => 1/y = 1/48 => y = 48 (thoả)
=> Nếu làm riêng thì người thứ nhất phải làm trong 24 giờ
người thứ hai phải làm trong 48 giờ.
Gọi x giờ là thời gian hoàn thành công việc của người thợ thứ nhất khi làm một mình, tương tự y giờ là của người thứ hai (x và y là các số dương)
=> trong 1 giờ người thứ nhất làm được 1/x công việc
người thứ hai làm được 1/y công việc
=> Trong 1 giờ hai người cùng làm được: 1/x + 1/y = 1/16 (1)
Trong 3 giờ người thứ nhất làm được 3/x công việc
trong 6 giờ người thứ hai làm được 6/y công việc
=> Hai người đã làm: 3/x + 6/y = 25% = 1/4 (2)
Từ (1) và (2) ta có hệ phương trình;
{1/x + 1/y = 1/16
{3/x + 6/y = 1/4
Đặt 1/x = u và 1/y = v ta có:
{u + v = 1/16
{3u + 6v = 1/4
Giải hệ phương trình này ta có:
u = 1/24
v = 1/48
Vì 1/x = u => 1/x = 1/24 => x = 24 (thoả)
Vì 1/y = v => 1/y = 1/48 => y = 48 (thoả)
=> Nếu làm riêng thì người thứ nhất phải làm trong 24 giờ
người thứ hai phải làm trong 48 giờ.
Đổi 7h12ph = 35/6 giờ
Gọi thời gian làm riêng xong công việc của người thứ nhất là x giờ (x>0), của người thứ hai là y giờ (y>0)
Trong 1h người thứ nhất làm được \(\dfrac{1}{x}\) phần công việc
Trong 1h người thứ hai làm được \(\dfrac{1}{y}\) phần công việc
Do hai người cùng làm trong 36/5 giờ xong việc nên:
\(\dfrac{36}{5}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)=1\Rightarrow\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{5}{36}\)
Do người thứ nhất làm 6h và người 2 làm 3h thì được 2/3 công việc nên:
\(\dfrac{6}{x}+\dfrac{3}{y}=\dfrac{2}{3}\)
Ta được hệ: \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{5}{36}\\\dfrac{6}{x}+\dfrac{3}{y}=\dfrac{2}{3}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{1}{12}\\\dfrac{1}{y}=\dfrac{1}{18}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=12\\y=18\end{matrix}\right.\)
Anh giúp em ạ!
https://hoc24.vn/cau-hoi/.7807802091097