Từ các chữ số 0, 1, 5, 8, 9 có thể lập được bao nhiêu số có ba chữ số khác nhau và không chia hết cho 9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2:
\(\overline{abcd}\)
d có 1 cách chọn
a có 3 cách chọn
b có 2 cách chọn
c có 1 cách chọn
=>Có 3*2*1*1=6 cách
1: \(\overline{abc}\)
a có 3 cách
b có 3 cách
c có 2 cách
=>Có 3*3*2=18 cách
Số chia hết cho 4 khi 2 chữ số tận cùng của nó chia hết cho 4, nên ý tưởng ở đây là chọn 2 số tận cùng trước.
Có \(\dfrac{96-04}{4}+1=24\) số có 2 chữ số chia hết cho 4 (tính cả những số bắt đầu bằng 0 như 04, 08...)
Loại ra 2 trường hợp 2 chữ số trùng nhau là \(44\) và \(88\), ta còn 22 chữ số.
Chia 22 chữ số này làm 2 loại: có chứa chữ số 0 bao gồm 6 số là 04, 08, 20, 40, 60, 80 và 16 số không chứa chữ số 0
- TH1: 2 chữ số cuối có chứa 0, chọn 3 chữ số còn lại từ 8 chữ số còn lại và hoán vị chúng có \(A_8^3\) cách \(\Rightarrow6.A_8^3\) số
- TH2: 2 chữ số cuối không chứa chữ số 0:
+ Chọn 3 chữ số còn lại 1 cách bất kì và hoán vị: \(A_8^3\) cách
+ Chọn 3 chữ số còn lại có mặt chữ số 0 và hoán vị sao cho số 0 đứng đầu: \(A_7^2\) cách
\(\Rightarrow16.\left(A_8^3-A_7^2\right)\) số
Cộng 2 trường hợp lại
Số số khác nhau có 3 chữ số: \(4.4.3=48\)
Chỉ có một bộ duy nhất có tổng chia hết cho 9 là 1;8;9, hoán vị 3 chữ số này có 3!=6 cách
Vậy có \(48-6=42\) số