Cho hình vuông ABCD cố định. E là điểm di động trên cạnh CD. Tia AE cắt đường thẳng BC tại F. Tia Ax vuông góc với AE tại A cắt đường thẳng DC tại K.
a) Chứng minh rằng tam giác KAF là tam giác vuông cân.
b) Chứng minh: \(\widehat{CAF}=\widehat{CKF}\)
c) Chứng minh rằng BD đi qua I là trung điểm của KF
b: góc FAK=góc FCK=90 độ
=>ACFK nội tiếp
=>góc CAF=góc CKF
a: góc AKF=180 độ-góc ACF=180 độ-90 độ-45 độ=45 độ
=>ΔAKF vuông cân tại A