Cho đường tròn tâm O và điểm S ở ngoài đường tròn . Từ S kẻ hai tiếp tuyến SA và SD và cát tuyến SBC tới đường tròn ( B ở giữa S và C ).
a) Phân giác của góc BAC cắt dây cung BC ở M . Chứng minh SA = SM .
b) AM cắt đường tròn ở E. Gọi G là giao điểm của OE và BS; F là giao điểm của AD với BC . Chứng minh SA^2 = SG . SF .
c) Biết SB = a ; Tính SF khi BC = \(\dfrac{2a}{3}\)
a: góc SAM=góc SAB+góc BAM
góc SMA=góc SCA+góc MAC
mà góc SAB=góc SCA và góc BAM=góc CAM
nên góc SAM=góc SMA
=>SM=SA
b: góc SGO=90 độ
Vì góc SAO=góc SGO
=>SAGO nọpi tiếp
=>góc SGA=góc SOA=1/2*góc DOA=1/2*sđ cung AD
=>góc SAD=góc SGA
=>ΔSAF đồng djng với ΔSGA
=>SA/SG=SF/SA
=>SA^2=SG*SF