cho hình chữ nhật ABCD có AB=60cm,AD=32cm.từ D kẻ đường thẳng vuông góc với đường cháo AC,đường thẳng này cắt AC tại E và AB tại F
a) chứng minh tam giác ABD đồng dạng tam giác ADC
b) cm tam giác ADF đồng dạng tam giác DCA
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBDE vuông tại D và ΔDCE vuông tại C có
góc E chung
=>ΔBDE đồng dạng với ΔDCE
b: BD=căn 8^2+6^2=10cm
BE=10^2/6=100/6=50/3cm
EC=DC^2/BC=8^2/6=32/3cm
Xét ΔEBD có CH//BD
nên CH/BD=EC/EB
=>CH/10=32/50=16/25
=>CH=160/25=6,4cm
a: Xét ΔAFE vuông tại A và ΔDFC vuông tại D có
góc AFE=góc DFC
=>ΔAFE đồng dạng với ΔDCF
b: Xét ΔAEF vuông tại A và ΔACB vuông tại A có
góc AEF=góc ACB
=>ΔAEF đồng dạng với ΔACB
=>EF/CB=AE/AC
=>EF*AC=AE*CB
a: Xét ΔBDE vuông tại D và ΔDCE vuông tại C có
góc E chung
=>ΔBDE đồng dạng với ΔDCE
b: Xét ΔHCD vuông tại H và ΔCDB vuông tại C có
góc HCD=góc CDB
=>ΔHCD đồng dạng với ΔCDB
=>HC/CD=CD/DB
=>CD^2=HC*DB
xét ΔABC và ΔADC có
\(\widehat{ADC}\)=\(\widehat{ABC}\)=90\(^o\)
\(\dfrac{AB}{DC}\)=\(\dfrac{BC}{AD}\)=1
=>ΔABC∼ΔADC(c.g.c)
xét ΔADF và ΔAFE có
\(\widehat{ADF}\) Chung
\(\widehat{AED}\)=\(\widehat{AEF}\)=90\(^o\)
->ΔADF ∼ ΔAFE(2)
xét ΔAEF và ΔABC có
\(\widehat{CAB}\) chung
\(\widehat{ABC}\)=\(\widehat{AFE}\)=90\(^o\)
->ΔAEF ∼ ΔABC (3)
từ (1) ,(2) và (3)=>ΔADF ∼ ΔDCA