cho tam giác ABC vuông tại A có AB=AC gọi K là trung điểm của cạnh BC
a,Chứng minh Tam giác AKB=Tam giác AKC và AK vuông góc BC
b,Từ C kẻ đường vuông góc với BC cắt AB tại E.Chứng minh AK//CE và CE=CB
c, So sánh AK và CE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác AKB và tam giác AKC , có AB=AC (GT) BK là cạnh chung KB=KC ( K là trung điểm của BC) Do vậy tam giác AKB = tam giác AKC (c.c.c) b) Có tam giác AKB = AKC (cmt)
=> ˆAKB=ˆAKC⇒AKB^=AKC^. Mà ˆAKB+ˆAKC=ˆBKC=1800AKB^+AKC^=BKC^=1800. Do đó:
ˆAKB=ˆAKC=900⇒AK⊥BCAKB^=AKC^=90⇒AK⊥BC
Ta thấy: EC⊥BC ; AK⊥BC (cmt)
⇒EC∥AK⇒EC∥AK ()
c) Vì tam giác ABC là tam giác vuông cân tại A nên ˆB=45
Tam giác CBE vuông tại C có ˆB=45 ⇒ˆE=1800−(ˆC+ˆB)=180−(90+45)=45
⇒ˆE = ˆB⇒E^=B^ nên tam giác CBE cân tại C. Do đó CE=CB
Lời giải:
a) Xét tam giác AKB và AKC có:
AB=AC (giả thiết)
KB=KC (do K là trung điểm của BC)
AK chung
Do đó: \(\triangle AKB=\triangle AKC(c.c.c)\) (đpcm)
\(\Rightarrow \widehat{AKB}=\widehat{AKC}\). Mà \(\widehat{AKB}+\widehat{AKC}=\widehat{BKC}=180^0\). Do đó:
\(\widehat{AKB}=\widehat{AKC}=90^0\Rightarrow AK\perp BC\) (đpcm)
b)
Ta thấy: \(EC\perp BC; AK\perp BC\) (đã cm ở phần a)
\(\Rightarrow EC\parallel AK\) (đpcm)
c) Vì tam giác ABC là tam giác vuông cân tại A nên \(\widehat{B}=45^0\)
Tam giác CBE vuông tại C có \(\widehat{B}=45^0\) \(\Rightarrow \widehat{E}=180^0-(\widehat{C}+\widehat{B})=180^0-(90^0+45^0)=45^0\)
\(\Rightarrow \widehat{E}=\widehat{B}\) nên tam giác CBE cân tại C. Do đó CE=CB (đpcm)
a/ Ta có: AB = AC (gt); BK = KC (vì K là trung điểm của BC); AK là cạnh chung
=>> tg AKB = tg AKC (c.c.c)
Ta có: AB = AC (gt) => tg ABC vuông cân tại A
mà K là trung điểm của BC
=>> AK là đường trung trực của tg ABC
=> AK\(\perp\) BC
b/ Ta có: EC \(\perp BC\) (gt) và AK\(\perp BC\) (cmt)
=>> EC // AK
c/ AK là đường cao đồng thời là đường phân giác của tam giác ABC vuông cân tại A
=> \(\widehat{BAK}\) = \(\widehat{KAC}\) = 45 độ
=> tg AKB vuông cân tại B => \(\widehat{KBA}=\widehat{BAK}\) (1)
Ta có: EC // AK (cmt) => \(\widehat{BAK}=\widehat{BEC}\) (2)
Từ (1) vả (2) => \(\widehat{KBA}=\widehat{BEC}\)
=> tg BCE cân tại C =>> CE = CB
a) Xét tam giác AKB và tam giác AKC, ta có:
AK là cạnh chung
KB = KC (vì K là trung điểm của BC)
AB = AC (gt)
Suy ra: Tam giác AKB = Tam giác AKC (c-c-c)
Vì tam giác AKB = Tam giác AKC (cmt)
Nên góc AKB = góc AKC (2 cạnh tương ứng)
mà góc AKB + góc AKC = 1800 (Kề bù)
Suy ra \(AK\perp KC\)hay \(AK\perp BC\)
b) Ta có \(AK\perp BC\)
\(EC\perp BC\)
Suy ra: \(AK//EC\)(Từ vuông góc đến song song)
c) Xét tam giác CEA và tam giác CBA, ta có
Góc CEA = Góc CBA (=900) (vÌ Góc CEA + góc CBA = 1800, KỀ BÙ)
CA chung
Góc A = Góc C (=900)
Suy ra: Tam giác CEA = Tam giác CBA (g-c-g)
Nên CE = CB (2 cạnh tương ứng)
Vậy......
~Hok tốt nha Nguyễn thái bình ~~
a: Xét ΔAKB và ΔAKC có
AK chung
KB=KC
AB=AC
=>ΔAKB=ΔAKC
=>góc AKB=góc AKC=180/2=90 độ
=>AK vuông góc BC
b: AK vuông góc BC
CE vuông góc CB
=>AK//CE
Xét ΔCEB vuông tại C có góc B=45 độ
nên ΔCEB vuông cân tại C
=>CE=CB
c: AK=1/2CE(do AK là đường trung bình của ΔCEB)