K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2023

`a)` 

Có `Delta ABC ` cân tại `A(GT)=>AB=AC`

Xét `Delta ADB` và `Delta AEC` có:

`{:(AB=AC(cmt)),(hat(A)-chung),(AD=AE(GT)):}}`

`=>Delta ADB=Delta AEC(c.g.c)(đpcm)`

`b)`

Có `Delta ABC` cân tại `A=>hat(ABC)=hat(ACB)`

`=>hat(EBC)=hat(DCB)`

mà `hat(B_1)=hat(C_1)(Delta ADB=Delta AEC)`

`hat(B_1)+hat(B_2)=hat(EBC)`

`hat(C_1)+hat(C_2)=hat(DCB)`

nên `hat(B_2)=hat(C_2)`

`=>Delta IBC` cân tại `I` 

`c)`

Có `AE=AD(GT)=>Delta AED` cân tại `A`

`=>hat(E_1)=(180^0-hat(A))/2(1)`

`Delta ABC` cân tại `A(GT)=>hat(ABC)=(180^0-hat(A))/2(2)`

Từ `(1)` và `(2)=>hat(E_1)=hat(ABC)`

mà `2` góc này ở vị trí đ/vị 

nên `ED////BC(đpcm)`

c.ơn nha

 

A B C I E D

a, Xét tam giác ADB và tam giác AEC có :

AE = AD ( gt )

\(\widehat{A}\) chung

AB = AC ( gt )

=> \(\Delta ADB=\Delta AEC\left(c-g-c\right)\)

b, Do \(\Delta ADB=\Delta AEC\) ( câu a, )

=> \(\widehat{ABD}=\widehat{ACE}\) ( 2 góc tương ứng )

BD nằm giữa 2 tia EB và EC 

=> \(\widehat{EBD}+\widehat{CBD}=\widehat{B}\)

\(\Rightarrow\widehat{CBD}=\widehat{B}-\widehat{EBD}\) ( 1 )

CE nằm giữa 2 tia CD và CB 

\(\Rightarrow\widehat{BCE}+\widehat{DCE}=\widehat{C}\)

\(\Rightarrow\widehat{BCE}=\widehat{C}-\widehat{DCE}\) ( 2 )

Từ ( 1 ) và ( 2 ) 

=> \(\widehat{CBD}=\widehat{BCE}\) hay \(\widehat{IBC}=\widehat{ICB}\)

Xét tam giác IBC có 

\(\widehat{IBC}=\widehat{ICB}\)

=> tam giác IBC cân tại I

c, Xét tam giác AED có :

AE = AD ( gt )

=> Tam giác AED cân tại A

=> \(\widehat{AED}=\dfrac{180^0-\widehat{A}}{2}\)( 3 )

Tam giác ABC cân tại A 

=> \(\widehat{B}=\dfrac{180^0-\widehat{A}}{2}\) ( 4 )

Từ ( 3 ) , ( 4) => \(\widehat{AED}=\widehat{B}\)

Đường thẳng AB bị 2 đường thẳng ED và BC cắt tạo thành cặp góc đồng vị bằng nhau \(\widehat{AED}=\widehat{B}\)

=> ED // BC ( đpcm)

 

18 tháng 4 2018

 

17 tháng 2 2020

ABCEDO

a) Xét △ABD và △ACE có:

           AB = AC (gt)

           \(\widehat{A}\) chung

           AD = AE (gt)

\(\Rightarrow\)△ABD = △ACE (c.g.c)

\(\Rightarrow\)DB = EC (cặp cạnh tương ứng)

b) Ta có :△ABD = △ACE

\(\Rightarrow\widehat{B_1}=\widehat{C_1}\)  (cặp góc tương ứng)

Mà \(\widehat{ABC}=\widehat{ACB}\) ( △ABC cân tại đỉnh A)

\(\Rightarrow\widehat{ABC}-\widehat{B_1}=\widehat{ACB}-\widehat{C_1}\)

\(\Rightarrow\widehat{OBC}=\widehat{OCB}\)

\(\Rightarrow\)△OBC cân tại đỉnh O

\(\Rightarrow\)OB = OC

Ta có: DB = EC (cmt)

           OB = OC

\(\Rightarrow\)DB - OB = EC - OC

\(\Rightarrow\)OE = OD

\(\Rightarrow\)△ODE cân đỉnh O (ĐPCM)

c) △OBC cân tại đỉnh O

\(\Rightarrow\)\(\widehat{OCB}=\frac{180^o-\widehat{BOC}}{2}\)

    △ODE cân tại đỉnh O

\(\Rightarrow\widehat{DEO}=\frac{180^o-\widehat{DOE}}{2}\)

Mà \(\widehat{BOC}=\widehat{DOE}\)(đối đỉnh)

\(\Rightarrow\widehat{DEO}=\widehat{OCB}\)

Vì 2 góc này nằm ở vị trí so le trong

\(\Rightarrow\)DE // BC (ĐPCM)

2 tháng 3 2022

đúng đúng haha

30 tháng 10 2021

a, Vì \(\left\{{}\begin{matrix}AB=AC\\AD=AE\\\widehat{BAC}.chung\end{matrix}\right.\) nên \(\Delta ABD=\Delta ACE\left(c.g.c\right)\)

b, Vì \(\Delta ABD=\Delta ACE\) nên \(\widehat{ABD}=\widehat{ACE}\)

Mà \(\widehat{ABC}=\widehat{ACB}\) nên \(\widehat{ABC}-\widehat{ABD}=\widehat{ACB}-\widehat{ACE}\)

Do đó \(\widehat{IBC}=\widehat{ICB}\) nên tam giác IBC cân tại I

c, \(AD=AE\) nên tg ADE cân tại A

Do đó \(\widehat{AED}=\dfrac{180^0-\widehat{BAC}}{2}\)

Mà tg ABC cân tại A nên \(\widehat{ABC}=\dfrac{180^0-\widehat{BAC}}{2}\)

\(\Rightarrow\widehat{AED}=\widehat{ABC}\)

Mà 2 góc này ở vị trí đồng vị nên DE//BC

1:

a: Xét ΔABC có AD là phân giác

nên BD/AB=CD/AC

mà AB<AC

nên BD<CD

b: AB<AC
=>góc B>góc C

góc ADB=góc C+góc CAD

góc ADC=góc B+góc BAD

mà góc C<góc B và góc CAD=góc BAD

nên góc ADB<góc ADC