K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\Omega=\left\{1;2;3;4;5;6\right\}\)

=>n(omega)=6

A={1;4}

=>n(A)=2

=>P(A)=2/6=1/3

b: B={3;4;5;6}

=>n(B)=4

=>P(B)=4/6=2/3

a: \(\Omega=\left\{1;2;3;4;5;6\right\}\Leftrightarrow n\left(\Omega\right)=6\)

\(A=\left\{2;5\right\}\)

=>P(A)=2/6=1/3

b: B={1;5}

=>n(B)=2

=>P(B)=2/6=1/3

a: n(omega)=6

n(A)=3

=>P(A)=3/6=1/2

b: n(B)=5

=>P(B)=5/6

20 tháng 5 2023

a) A là chắc chắn, B là ngẫu nhiên, C là không thể

b) 3/6 =1/2

NV
20 tháng 4 2023

Có 2 trường hợp thuận lợi là các mặt 4 ,6

Do đó xác suất là: \(\dfrac{2}{6}=\dfrac{1}{3}\)

20 tháng 4 2023

Anh giúp em ạ! Anh làm em câu c ạ. 

https://hoc24.vn/cau-hoi/.7926295438489

NV
22 tháng 12 2022

Không gian mẫu: \(6.6=36\)

a.

Lần thứ nhất có 1 khả năng thỏa mãn (3 chấm)

Lần thứ 2 bất kì => có 6 khả năng

\(\Rightarrow1.6=6\) khả năng để lần thứ nhất xuất hiện mặt 3 chấm

Xác suất: \(P=\dfrac{6}{36}=\dfrac{1}{6}\)

b.

Xác suất để cả 2 lần đều ko xuất hiện mặt 2 chấm là: \(\dfrac{5}{6}.\dfrac{5}{6}=\dfrac{25}{36}\)

Xác suất để ít nhất 1 lần xuất hiện mặt 2 chấm: \(1-\dfrac{25}{36}=\dfrac{11}{36}\)

c.

Các trường hợp có số chấm thuận lợi: (1;1);(1;2);(1;3);(1;4);(2;1);(2;2);(2;3);(3;1);(3;2);(4;1) có 10 trường hợp

Xác suất: \(P=\dfrac{10}{36}=\dfrac{5}{18}\)

Thầy có thể giải thích hơn về câu a và câu b của bài này được không ạ?