K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2016

M H B A C  theo định lí thì ba góc  aBc + bAc+bCa=1800

6 tháng 9 2016

bài này hay đó

tg AHM vuong tai H có A +M = 90 ; M = 2A

       => M =60; A =30

Từ đó tg ABC có A= 90; B = 60; C=30

( học là phải suy nghĩ.....)

11 tháng 12 2020

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được: 

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AB^2=BC^2-AC^2=12^2-8^2=80\)

hay \(AB=4\sqrt{5}cm\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được: 

\(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH\cdot12=8\cdot4\sqrt{5}=32\sqrt{5}\)

\(\Leftrightarrow AH=\dfrac{32\sqrt{5}}{12}=\dfrac{8\sqrt{5}}{3}cm\)

Vậy: \(AB=4\sqrt{5}cm\)\(AH=\dfrac{8\sqrt{5}}{3}cm\)

c)

Ta có: D và C đối xứng nhau qua A(gt)

nên A là trung điểm của DC

Xét ΔBDC có 

BA là đường cao ứng với cạnh DC(BA⊥DC)

BA là đường trung tuyến ứng với cạnh DC(A là trung điểm của DC) 

Do đó: ΔBDC cân tại B(Định lí tam giác cân)

\(\widehat{D}=\widehat{C}\)

Xét ΔADE vuông tại E và ΔACH vuông tại H có 

AD=AC(A là trung điểm của DC)

\(\widehat{D}=\widehat{C}\)(cmt)

Do đó: ΔADE=ΔACH(cạnh huyền-góc nhọn)

⇒AE=AH(hai cạnh tương ứng)

mà AH là bán kính của đường tròn (A;AH)

nên AE là bán kính của đường tròn (A;AH)

Xét (A;AH) có 

AE là bán kính(cmt)

AE⊥BD tại E(gt)

Do đó: BD là tiếp tuyến của đường tròn(A;AH)(Dấu hiệu nhận biết tiếp tuyến đường tròn)

26 tháng 10 2021

\(AH=\dfrac{AB\cdot AC}{BC}=2.4\left(cm\right)\)

\(BH=\sqrt{3^2-2.4^2}=1.8\left(cm\right)\)

CH=BC-HB=5-1,8=3,2(cm)

26 tháng 10 2021

Chi tiết hơn được không ạ :3

17 tháng 8 2019

Ai đon nâu nâu . Tự làm đi . Dễ ợt ra.

4 tháng 6 2020

Dễ mà ko bt lm lêu lêu