K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2017

ta có p là số nguyên tố lớn hơn 3 và p=5,7,11,13,17,......

24 là số chẵn mà p2 là số lẻ nên 

pkhông chia hết cho 24

(mới lớp 5 không biết nhiều ^^ )

24 tháng 3 2017

B(24) thuộc{24;48;72;96;...}

mà  

5 tháng 11 2017

Số nguyên tố > 3 luôn tồn tại dưới dạng 3k + 1 hoặc 3k + 2

Nếu p = 3k + 1

=> p + 2 = 3k + 1 + 2 = 3k + 3 = 3 ( k + 1 ) <=> chia hết cho 3

Vậy p không tồn tại ở dạng 3k + 1

=> p = 3k + 2 

=> p + 1 = 3k + 2 + 1 = 3k + 3 = 3 ( k + 1 ) <=> chia hết cho 3

Mà các số nguyên tố lớn hơn 3 đều là số lẻ

=> p + 1 là số chẵn <=> chia hết cho 2

p + 1 vừa chia hết cho 2 , vừa chia hết cho 3

=> p + 1 chia hết cho 6

5 tháng 11 2017

bạn có thể làm cách đi-ric-lê

1 tháng 12 2016

Số nguyên tố lớn hơn 3 sẽ có dạng 3k + 1  hay 3k + 2 ( k \(\in\)N )

Nếu p = 3k + 1 thì p + 2 = 3k + 1 + 2 = 3k + 3 = 3( k + 1 ) là số nguyên tố

Vì 3( k + 1 ) chia hết cho 3 nên dạng  p = 3k + 1 không thể có

Vậy p có dạng 3k + 2 ( Vậy, p + 2 = 3k + 2 + 2 = 3k + 4 là 1 số nguyên tố )

=> p + 1 = 3k + 2 + 1 = 3k + 3 = 3( k+1 ) chia hết cho 3

Mặt khác p là 1 số nguyên tố lớn hơn 3 cũng như lớn hơn 2 nên p là 1 số nguyên tố lẻ

=> p + 1 là 1 số chẵn 

=> p + 1 chia hết cho 2

Vì p chia hết cho cả 2 và 3 mà ƯCLN( 2; 3 ) = 1 

=> p + 1 chia hết cho 6

Vì p là số nguyên tố >3 nên p là số lẻ

 2 số p-2,p+1 là 2 số chẵn liên tiếp

(p-2)(p+1) ⋮ cho 8 (1)

Vì p là số nguyên tố lớn hơn 3 nên

 p=3k+1 hoặc p=3k+2 (k thuộc N*)

+)Với p=3k+1  (p-2)(p+1)=3k(3k+2) ⋮ cho 3 (*)

+) Với p=3k+2  (p-2)(p+1)=(3k-1).3.(k+1) ⋮ 3 (**)

Từ (*) và (**) (p-2)(p+1) ⋮ 3 (2)

Vì (8;3)=1 → từ (1) và (2) => (p-2)(p+1) ⋮ 24

21 tháng 1 2018

Ta có:

12p2-1 

=>12p.12p - 1 

=> 144p - 1 

144p chia hết cho 24, 1 không chia hết cho 24.

=> 12p^2-1 \(⋮̸\)24

Vậy 12p2-1 \(⋮̸\)24