Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ tiếp tuyến tại E,D cắt nhau tại T
Xét (O) có
AB,AC là tiếp tuyên
nên AB=AC
mà OB=OC
nên OA là trung trực của BC
=>OA vuông góc BC
=>AH*AO=AB^2
Xét ΔABD và ΔAEB có
góc ABD=góc AEB
góc BAD chung
=>ΔABD đồng đạng với ΔAEB
=>AB/AE=AD/AB
=>AB^2=AE*AD=AH*AO
=>AD/AO=AH/AE
=>ΔADH đồng dạng vơi ΔAOE
=>góc ADH=góc AOE
=>góc DHO+góc DEO=180 độ
=>OHDE là tứ giác nội tiếp(1)
Xét tứ giác OETD có
góc OET+góc OTD=180 độ
=>OETD là tứ giác nội tiếp(2)
Từ (1), (2) suy ra O,E,T,D,H cùng thuộc 1 đường tròn
=>góc EHT=1/2*sđ cung ET; góc THD=1/2*sđ cung TD
ΔOET=ΔODT
=>ET=DT
=>góc EHT=góc DHT
=>HB là phân giác của góc DHE
a: Xét tứ giác AIOC có \(\widehat{AIO}+\widehat{ACO}=180^0\)
nên AIOC là tứ giác nội tiếp
Xét (O) có
AB là tiếp tuyến
AC là tiếp tuyến
Do đó: AB=AC
mà OB=OC
nên OA là đường trung trực của BC
hay OA⊥BC
b: Xét ΔABD và ΔAEB có
\(\widehat{ABD}=\widehat{AEB}\)
\(\widehat{BAD}\) chung
Do đó: ΔABD\(\sim\)ΔAEB
Suy ra: AB/AE=AD/AB
hay \(AB^2=AD\cdot AE\)
a: Xét tứ giác AIOC có \(\widehat{AIO}+\widehat{ACO}=180^0\)
nên AIOC là tứ giác nội tiếp
Xét (O) có
AB là tiếp tuyến
AC là tiếp tuyến
Do đó: AB=AC
mà OB=OC
nên OA là đường trung trực của BC
hay OA⊥BC
b: Xét ΔABD và ΔAEB có
\(\widehat{ABD}=\widehat{AEB}\)
\(\widehat{BAD}\) chung
Do đó: ΔABD\(\sim\)ΔAEB
Suy ra: AB/AE=AD/AB
hay \(AB^2=AD\cdot AE\)
a: Xét tứ giác OIBA có \(\widehat{OIA}=\widehat{OBA}=90^0\)
nên OIBA là tứ giác nội tiếp
b: Xét ΔACD và ΔAEC có
\(\widehat{ACD}=\widehat{AEC}\)
\(\widehat{DAC}\) chung
Do đó: ΔACD\(\sim\)ΔAEC
SUy ra: AC/AE=AD/AC
hay \(AC^2=AE\cdot AD\left(1\right)\)
c: Xét (O) có
AB là tiếp tuyến
AC là tiếp tuyến
Do đó: AB=AC
mà OB=OC
nên OA là đường trung trực của BC
Xét ΔOCA vuông tại C có CK là đường cao
nên \(AK\cdot AO=AC^2\left(2\right)\)
Từ (1) và (2) suy ra \(AK\cdot AO=AD\cdot AE\)
hay AK/AE=AD/AO
Xét ΔAKD và ΔAEO có
AK/AE=AD/AO
góc KAD chung
DO đó: ΔAKD\(\sim\)ΔAEO
Suy ra: \(\widehat{AKD}=\widehat{AEO}\)
a: Xét ΔOBA và ΔOCA có
OB=OC
\(\widehat{BOA}=\widehat{COA}\)
OA chung
Do đó: ΔOBA=ΔOCA
=>AC là tiếp tuyến của (O)
b: góc EHC=90 độ-góc OHE
=90 độ-góc ODE
=(180 độ-2*góc ODE)/2
=góc DOE/2
=góc EHD
=>HC là phân giác của góc DHE
a: Xét (O) có
AB,AC là tiếp tuyến
nên AB=AC
mà OB=OC
nên OA là trung trực của BC
=>OA vuông góc BC tại H
=>AH*AO=AB^2
Xet ΔABD và ΔAEB có
góc ABD=góc AEB
góc BAD chung
=>ΔABD đồng dạng với ΔAEB
=>AB/AE=AD/AB
=>AB^2=AE*AD=AH*AO
b: AE*AD=AH*AO
=>AE/AH=AO/AD
=>ΔAEO đồng dạng với ΔAHD
=>góc AHD=góc AEO
=>góc OHD+góc OED=180 độ
=>OEDH là tứ giác nội tiếp
câu 2 ý b và câu c nữa