K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

 

Bài 1:

a: Xét ΔABC có BC^2=AB^2+AC^2

nên ΔABC vuông tại A

b: Vì AB<AC<BC

nên góc C<góc B<góc A

21 tháng 12 2021

bài 2:

ta có: AB<AC<BC(Vì 3cm<4cm<5cm)

=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)

Bài 3:

*Xét tam giác ABC, có:

       góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)

hay góc A+60 độ +40 độ=180độ

  => góc A= 180 độ-60 độ-40 độ.

  => góc A=80 độ

Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)

        => BC>AC>AB( Các cạnh và góc đối diện trong tam giác)

15 tháng 2 2022

bài 2:

ta có: AB <AC <BC (Vì 3cm <4cm <5cm)

=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)

Bài 3:

*Xét tam giác ABC, có:

       góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)

hay góc A+60 độ +40 độ=180độ

  => góc A= 180 độ-60 độ-40 độ.

  => góc A=80 độ

Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)

        => BC>AC>AB( Các cạnh và góc đối diện trong tam giác)

HT mik làm giống bạn Dương Mạnh Quyết

21 tháng 4 2020

a) Ta có : AB2AB2 = 5252 = 25 

AC2AC2 = 122122= 144 

⇒⇒ AB2+AC2AB2+AC2 = 25 +144 = 169    *1* 

Mà BC2BC2 = 132132 = 169    *2* 

Từ *1* và *2* suy ra AB2+AC2AB2+AC2 = BC2BC2 

Theo định lý Pytago đảo thì tam giác ABC là tam giác vuông tại A. 

b) Theo đề bài ta có : AB < AC < BC (  5 < 12 < 13 ) nên 

⇒⇒ ˆCC^ < ˆBB^ < ˆAA^ ( quan hệ giữa góc và cạnh trong một tam giác

21 tháng 4 2020

A B C

a, có \(AB^2=5^2=25\)

\(AC^2=12^2=144\)

\(\Rightarrow AB^2+AC^2=25+144=169\left(1\right)\)

\(BC^2=13^2=169^2\left(2\right)\)

Từ 1 và 2 \(\Rightarrow AB^2+AC^2=BC^2\)

Dựa vào định lí  py - ta - go đảo ta có \(\Delta ABC\)là tam giác vuông tại A

b, như đề bài ta có :

\(AB< AC< BC\)hay \(5< 12< 13\)

\(\Rightarrow\widehat{C}< \widehat{B}< \widehat{A}\)(Dựa vào quan hệ giữa góc và cạnh trong 1 tam giác )

Chúc bạn học tốt !

Bài 1: 

a: Xét ΔABC có \(AC^2=AB^2+BC^2\)

nên ΔABC vuông tại B

b: XétΔABC có BC<AB<AC

nên \(\widehat{A}< \widehat{C}< \widehat{B}\)

28 tháng 2 2020

b2 :

a, xét tam giác ABD và tam giác ACE có: góc A chung

AB = AC do tam giác ABC cân tại A (gt)

góc ADB = góc AEC = 90

=> tam giác ABD = tam giác ACE (ch-cgv)

b, tam giác ABD = tam giác ACE (câu a)

=> góc ABD = góc ACE (đn)

góc ABC = góc ACB do tam giác ABC cân tại A (gt)

góc HBC = góc ABC - góc ABD

góc HCB = góc ACB - góc ACE 

=> góc HBC = góc HCB 

=> tam giác HBC cân tại H (Dh)

còn câu 1

a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AB}{4}=\dfrac{AC}{5}=\dfrac{BC}{6}=\dfrac{AB+AC+BC}{4+5+6}=\dfrac{30}{15}=2\)

Do đó: AB=8cm; AC=10cm; BC=12cm

=>\(\widehat{C}< \widehat{B}< \widehat{A}\)

b: \(\cos MAB=\dfrac{AB^2+AM^2-BM^2}{2\cdot AB\cdot AM}=\dfrac{AB^2+AM^2-CM^2}{2\cdot AB\cdot AM}\)

\(\cos MAC=\dfrac{AM^2+AC^2-MC^2}{2\cdot AM\cdot AC}\)

mà \(\dfrac{AB^2+AM^2-MC^2}{2\cdot AM\cdot AC}< \dfrac{AM^2+AC^2-MC^2}{2\cdot AM\cdot AC}\)

nên \(\widehat{MAB}>\widehat{MAC}\)

Câu 1: 

Xét ΔABC có AB<BC<AC

nên \(\widehat{C}< \widehat{A}< \widehat{B}\)

a: Xét ΔABC có AB<BC<AC

nên \(\widehat{C}< \widehat{A}< \widehat{B}\)

b: XétΔABC có \(AC^2=BA^2+BC^2\)

 nên ΔABC vuông tại B

19 tháng 2 2022

a, Ta có AC > BC > AB 

=> ^B > ^A > ^C 

b, Ta có \(AC^2=AB^2+BC^2\Leftrightarrow100=64+36\)*đúng* 

Vậy tam giác ABC vuông tại B