Câu 1 :1, cho tam giác abc có ab=5cm , ac = 12cm , bc=13 cm
a. Tam giác abc là tam giác gì?
b. so sánh các góc của tam giác abc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 2:
ta có: AB<AC<BC(Vì 3cm<4cm<5cm)
=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)
Bài 3:
*Xét tam giác ABC, có:
góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)
hay góc A+60 độ +40 độ=180độ
=> góc A= 180 độ-60 độ-40 độ.
=> góc A=80 độ
Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)
=> BC>AC>AB( Các cạnh và góc đối diện trong tam giác)
bài 2:
ta có: AB <AC <BC (Vì 3cm <4cm <5cm)
=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)
Bài 3:
*Xét tam giác ABC, có:
góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)
hay góc A+60 độ +40 độ=180độ
=> góc A= 180 độ-60 độ-40 độ.
=> góc A=80 độ
Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)
=> BC>AC>AB( Các cạnh và góc đối diện trong tam giác)
HT mik làm giống bạn Dương Mạnh Quyết
a) Ta có : AB2AB2 = 5252 = 25
AC2AC2 = 122122= 144
⇒⇒ AB2+AC2AB2+AC2 = 25 +144 = 169 *1*
Mà BC2BC2 = 132132 = 169 *2*
Từ *1* và *2* suy ra AB2+AC2AB2+AC2 = BC2BC2
Theo định lý Pytago đảo thì tam giác ABC là tam giác vuông tại A.
b) Theo đề bài ta có : AB < AC < BC ( 5 < 12 < 13 ) nên
⇒⇒ ˆCC^ < ˆBB^ < ˆAA^ ( quan hệ giữa góc và cạnh trong một tam giác
a, có \(AB^2=5^2=25\)
\(AC^2=12^2=144\)
\(\Rightarrow AB^2+AC^2=25+144=169\left(1\right)\)
\(BC^2=13^2=169^2\left(2\right)\)
Từ 1 và 2 \(\Rightarrow AB^2+AC^2=BC^2\)
Dựa vào định lí py - ta - go đảo ta có \(\Delta ABC\)là tam giác vuông tại A
b, như đề bài ta có :
\(AB< AC< BC\)hay \(5< 12< 13\)
\(\Rightarrow\widehat{C}< \widehat{B}< \widehat{A}\)(Dựa vào quan hệ giữa góc và cạnh trong 1 tam giác )
Chúc bạn học tốt !
Bài 1:
a: Xét ΔABC có \(AC^2=AB^2+BC^2\)
nên ΔABC vuông tại B
b: XétΔABC có BC<AB<AC
nên \(\widehat{A}< \widehat{C}< \widehat{B}\)
b2 :
a, xét tam giác ABD và tam giác ACE có: góc A chung
AB = AC do tam giác ABC cân tại A (gt)
góc ADB = góc AEC = 90
=> tam giác ABD = tam giác ACE (ch-cgv)
b, tam giác ABD = tam giác ACE (câu a)
=> góc ABD = góc ACE (đn)
góc ABC = góc ACB do tam giác ABC cân tại A (gt)
góc HBC = góc ABC - góc ABD
góc HCB = góc ACB - góc ACE
=> góc HBC = góc HCB
=> tam giác HBC cân tại H (Dh)
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AB}{4}=\dfrac{AC}{5}=\dfrac{BC}{6}=\dfrac{AB+AC+BC}{4+5+6}=\dfrac{30}{15}=2\)
Do đó: AB=8cm; AC=10cm; BC=12cm
=>\(\widehat{C}< \widehat{B}< \widehat{A}\)
b: \(\cos MAB=\dfrac{AB^2+AM^2-BM^2}{2\cdot AB\cdot AM}=\dfrac{AB^2+AM^2-CM^2}{2\cdot AB\cdot AM}\)
\(\cos MAC=\dfrac{AM^2+AC^2-MC^2}{2\cdot AM\cdot AC}\)
mà \(\dfrac{AB^2+AM^2-MC^2}{2\cdot AM\cdot AC}< \dfrac{AM^2+AC^2-MC^2}{2\cdot AM\cdot AC}\)
nên \(\widehat{MAB}>\widehat{MAC}\)
Câu 1:
Xét ΔABC có AB<BC<AC
nên \(\widehat{C}< \widehat{A}< \widehat{B}\)
a: Xét ΔABC có AB<BC<AC
nên \(\widehat{C}< \widehat{A}< \widehat{B}\)
b: XétΔABC có \(AC^2=BA^2+BC^2\)
nên ΔABC vuông tại B
a, Ta có AC > BC > AB
=> ^B > ^A > ^C
b, Ta có \(AC^2=AB^2+BC^2\Leftrightarrow100=64+36\)*đúng*
Vậy tam giác ABC vuông tại B
Bài 1:
a: Xét ΔABC có BC^2=AB^2+AC^2
nên ΔABC vuông tại A
b: Vì AB<AC<BC
nên góc C<góc B<góc A