Cho Δ ABC vuông tại A, kẻ đường trung tuyến BI ( I ∈ AC ) . Trên tia đối của tia IB lấy điểm E sao cho IB = IE. Chứng minh rằng:
a) Δ AIB = Δ CIE
b) AB // CE
c) BC > CE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự kẻ hình nhé :v
a) Xét ΔAIB và ΔCIE có :
AI = CI ( gt)
Góc AIB = Góc CIE (2 góc đối đỉnh)
IB = IE (gt)
⇒ ΔAIB = ΔCIE (c.g.c)
b) ⇒ ΔAIB = ΔCIE (c.g.c)
⇒ Góc IBA = Góc IEC (2 góc tương ứng)
Mà 2 góc này lại so le trong với nhau suy ra AB // CE
c) Vì trong tam giác vuông cạnh huyền lớn nhất suy ra trong tam giác vuông ABC canh BC lớn nhất suy ra BC > AB
Mà AB = CE
⇒ BC > CE
a) Xét Δ AIB và Δ CID:
+ IB = ID (gt).
+ IA = IC (I là trung điểm của AC).
+ ^AIB = ^CID (2 góc đối đỉnh).
=> Δ AIB = Δ CID (c - g - c).
b) Xét tứ giác ABCD có:
+ I là trung điểm của AC (gt).
+ I là trung điểm của BC (IB = ID).
=> Tứ giác ABCD là hình bình hành (dhnb).
=> AD = BC và AD // BC (Tính chất hình bình hành).
c) Xét tứ giác KABC có:
+ E là trung điểm của AB (gt).
+ E là trung điểm của KC (EC = EK).
=> Tứ giác KABC là hình bình hành (dhnb).
=> KA // BC (Tính chất hình bình hành).
Mà AD // BC (cmt).
=> 3 điểm D, A, K thẳng hàng (đpcm).
a, ta có
BC^2=5^2=25
AB^2+AC^2=3^2+4^2=9+16=25
=>AB^2+AC^2=BC^2
=> tam giác ABC vuông tại A
b.
Dx vuông góc với BC
=> góc BDH=90 độ
xét tam giác HBA và tam giác HBD có
BA=BD(gt)
HB cạnh chung
góc HAB=góc HDB= 90 độ
=> tam giác HBA= tam giác HBD(cạnh huyền- cạnh góc vuông)
=> góc HBA=góc HBD(hai góc tương ứng)
=> BH là phân giác góc ABD
mik ko bít vẽ hk nha :(
a) xét tam giác AIB và tam giác CIE có:
AI = IC ( BI là đường trung tuyến)
IB = IE ( gt )
góc AIB = góc CIE ( 2 góc đối đỉnh )
=> tam giác AIB = tam giác CIE ( c.g.c)
b) vì tam giác AIB = tam giác CIE ( cm ý a )
=> góc ECI = IAB = 90'
=> EC vuông góc với AC mà AC vuông góc với AB
=> AB // CE ( đpcm )
c) vì BC > AB ( trong tam giác vuông, cạnh huyền > cạnh g vuông ) mà AB = CE ( tam giác AIB = tam giác CIE )
=> BC > CE ( đpcm)