K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2017

x^2+y^2+z^2-xy-3y-2z+4=0

x^2-xy+1/4y^2+3/4y^2-3y+3+z^2-2z+1=0

(x-1/2y)^2+3/4(y-2)^2+(z-1)^2=0

suy ra (x-1/2y)^2=0 (y-2)^2=0 (z-1)^2=0 

x=1/2y y=2 z=1

x=1,y=2,z=1

26 tháng 11 2017

bn gõ bài trong công thức trực quan ik, khó nhìn lắm, ko làm đc

26 tháng 11 2017

1). x2y2(y-x)+y2z2(z-y)-z2x2(z-x)

2)xyz-(xy+yz+xz)+(x+y+z)-1

3)yz(y+z)+xz(z-x)-xy(x+y)

5)y(x-2z)2+8xyz+x(y-2z)2-2z(x+y)2

6)8x3(y+z)-y3(z+2x)-z3(2x-y)

7) (x2+y2)3+(z2-x2)3-(y2+z2)3

21 tháng 1 2018

Ta có

(I): 4 x 2   +   4 x   –   9 y 2   +   1   =   ( 4 x 2   +   4 x   +   1 )   –   9 y 2   =   ( 2 x   +   1 ) 2   –   ( 3 y ) 2

= (2x + 1 + 3y)(2x + 1 – 3y) nên (I) đúng

(II):

5 x 2   –   10 x y   +   5 y 2   –   20 z 2   =   5 ( x 2   –   2 x y   +   y 2   –   4 z 2 )     =   5 [ ( x   –   y ) 2   –   ( 2 z ) 2 ]  

= 5(x – y – 2z)(x – y + 2z) nên (II) sai

Đáp án cần chọn là: A

27 tháng 5 2018

\(VT=6\left(x^2+y^2+z^2\right)+10\left(xy+yz+xz\right)+2\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\)

\(=6\left(x+y+z\right)^2-2\left(xy+yz+xz\right)+2\frac{9}{2x+y+z+x+2y+z+x+y+2z}\)

\(\ge6\left(x+y+z\right)^2-2\frac{\left(x+y+z\right)^2}{3}+2\frac{9}{4\left(x+y+z\right)}\)

\(=\: 6\cdot\left(\frac{3}{4}\right)^2-2\cdot\frac{\left(\frac{3}{4}\right)^2}{3}+2\cdot\frac{9}{4\cdot\frac{3}{4}}=9\)

4 tháng 9 2021

Biến đổi tương đương nhé bạn.

a: Ta có: \(\left(x+y\right)^2\)

\(=x^2+2xy+y^2\)

\(\Leftrightarrow x^2+y^2=\dfrac{\left(x+y\right)^2}{2xy}\ge\dfrac{\left(x+y\right)^2}{2}\forall x,y>0\)

24 tháng 8 2021

a) \(\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\left(\dfrac{x}{2}\right)^2=\left(\dfrac{y}{3}\right)^2=\dfrac{x.y}{2.3}=\dfrac{54}{6}=9\)

\(\Rightarrow\left\{{}\begin{matrix}x^2=36\\y^2=81\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=\pm6\\y=\pm9\end{matrix}\right.\)

b) \(\dfrac{x}{5}=\dfrac{y}{3}\Rightarrow\left(\dfrac{x}{5}\right)^2=\left(\dfrac{y}{3}\right)^2=\dfrac{x^2-y^2}{5^2-3^2}=\dfrac{4}{16}=\dfrac{1}{4}\)

\(\Rightarrow\left\{{}\begin{matrix}x^2=\dfrac{25}{4}\\y^2=\dfrac{9}{4}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\pm\dfrac{5}{2}\\y=\pm\dfrac{3}{2}\end{matrix}\right.\)

 

c: Ta có: \(\dfrac{x}{2}=\dfrac{y}{3}\)

nên \(\dfrac{x}{10}=\dfrac{y}{15}\)

Ta có: \(\dfrac{y}{5}=\dfrac{z}{7}\)

nên \(\dfrac{y}{15}=\dfrac{z}{21}\)

mà \(\dfrac{x}{10}=\dfrac{y}{15}\)

nên \(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}=\dfrac{92}{46}=2\)

Do đó: x=20; y=30; z=42

8 tháng 8 2017

a)(x-y)3+(y-z)3+(z-x)3

=3(x-y+y-z+z-x)=3

b)nhân vào là rồi đối trừ là hết luôn ( nhưng là mũ 2 hay nhân 2 v mk là theo nhân 2 nhé]

AH
Akai Haruma
Giáo viên
30 tháng 4 2023

Lời giải:

Từ điều kiện đề bài suy ra:
$\frac{x}{y}=\frac{y}{z}=\frac{z}{x}$

$\Rightarrow (\frac{x}{y})^3=(\frac{y}{z})^3=(\frac{z}{x})^3=\frac{x}{y}.\frac{y}{z}.\frac{z}{x}=1$
$\Rightarrow \frac{x}{y}=\frac{y}{z}=\frac{z}{x}=1$

$\Rightarrow x=y=z$.

Do đó:

$\frac{(x+y+z)^{2022}}{x^{337}.y^{674}.z^{1011}}=\frac{(3x)^{2022}}{x^{337}.x^{674}.x^{1011}}=\frac{3^{2022}.x^{2022}}{x^{2022}}=3^{2022}$

AH
Akai Haruma
Giáo viên
30 tháng 4 2023

Lời giải:

Từ điều kiện đề bài suy ra:
$\frac{x}{y}=\frac{y}{z}=\frac{z}{x}$

$\Rightarrow (\frac{x}{y})^3=(\frac{y}{z})^3=(\frac{z}{x})^3=\frac{x}{y}.\frac{y}{z}.\frac{z}{x}=1$
$\Rightarrow \frac{x}{y}=\frac{y}{z}=\frac{z}{x}=1$

$\Rightarrow x=y=z$.

Do đó:

$\frac{(x+y+z)^{2022}}{x^{337}.y^{674}.z^{1011}}=\frac{(3x)^{2022}}{x^{337}.x^{674}.x^{1011}}=\frac{3^{2022}.x^{2022}}{x^{2022}}=3^{2022}$