Chứng minh rằng:
a, \(A=\left(n^5-n\right):30\)với mọi n thuộc N
b, Nếu n là số tự nhiên lớn hơn 1 thì 2n - 1 ko thể là số chính phương.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1\)
\(=\left[n\left(n+3\right)\right]\left[\left(n+1\right)\left(n+2\right)\right]+1\)
\(=\left(n^2+3n\right)\left(n^2+2n+n+2\right)+1\)
Đặt \(n^2+3=t\)
=> \(A=t\left(t+2\right)+1\)
\(=t^2+2t+1\)
\(=\left(t+1\right)^2\)
=> A là số chính phương
Vậy với mọi số tự nhiên n thì \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1\) là số chính phương ( đpcm )
\(\left(3^{n+1}-2.2^n\right)\left(3.3^n+2^{n+1}\right).3^{2n+2}+\left(8.2^{n-2}.3^{n+1}\right)^2\)
\(=\left(3^{n+1}-2^{n+1}\right)\left(3^{n+1}+2^{n+1}\right).3^{2n+2}+\left(2^{n+1}.3^{n+1}\right)^2\)
\(=\left(3^{2n+2}-2^{2n+2}\right).3^{2n+2}+2^{2n+2}.3^{2n+2}\)
\(=3^{2\left(2n+2\right)}-2^{2n+2}.3^{2n+2}+2^{2n+2}.3^{2n+2}\)
\(=3^{2\left(2n+2\right)}=\left(3^{2n+2}\right)^2\).
Ta thấy \(\left(3^{2n+2}\right)^2\)luôn là 1 số chính phương với mọi n\(\in\)N
Nên ta có ĐPCM.
Đặt B = 10n + 10n-1 + ...+ 10 + 1
=> 10.B = 10n+1 + 10n + ...+ 102 + 10
=> 10B - B = 10n+1 -1
=> 9B = 10n+1 - 1
Ta có: 9A = 9B. (10n+1 + 5) + 9 = (10n+1 -1).(10n+1 + 5) + 9
9A = (10n+1)2 + 5.10n+1 - 10n+1 - 5 + 9 = (10n+1)2 + 4.10n+1 + 4
= (10n+1 + 2)2
=> A = \(\left(\frac{10^{n+1}+2}{3}\right)^2\)
Vì (10n+1 + 2 ) chia hết cho 3 nên \(\left(\frac{10^{n+1}+2}{3}\right)^2\) là số chính phương
=> A là số chính phương
Ta có công thức: an-1=(a-1)(an-1+an-2+...+a+1)
Từ đó suy ra:
A=\(\frac{10^{n+1}-1}{9}\left(10^{n+1}+5\right)+1\)
Đặt 10n+1=B => A=\(\frac{\left(B-1\right)}{9}\left(B+5\right)+1\)
=> A=\(\frac{\left(B-1\right)\left(B+5\right)+9}{9}\)
= \(\frac{B^2+4B+4}{9}\)
= \(\left(\frac{B+2}{3}\right)^2\)Hay \(\left(\frac{100...02_{\left\{n\right\}}}{3}\right)^2\)
= 333...342
Vậy A là số chính phương. (1)
Gỉa sử A=m3, m thuộc N
=> 333...34{n số 3} = m3
=> m3 chia hết cho 2
=> m chia hết cho 2
=> m3 chia hết cho 8 Hay (2.1666..67{n-1 số 6} )2 chia hết cho 8
=>4.1666..672{n-1 số 6} chia hết cho 8
=>1666..672 chia hết cho 2 (Vô Lý)
Vậy A ko thể là lập phương của 1 số tự nhiên. (2)
Từ (1) và (2) => ĐPCM
\(S=\left[\left(2n+1-1\right):2+1\right]\times\left(2n+1+1\right):2\)
\(S=\left(n+1\right)\times\left(2n+2\right):2\)
\(S=\left(n+1\right)\times\left(n+1\right)\)
\(S=\left(n+1\right)^2\)( dpcm )