cho tam giác ABC có 3 đường trung tuyến : AA'; BB'; CC'. Chứng minh rằng AA' + BB' + CC' > 3/4.( AB + BC + CA ).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tk mình đi mọi người mình bị âm nè!
Ai tk mình mình tk lại cho
Gọi G là giao điểm của ba đường trung tuyến, đồng thời là trọng tâm cảu tam giác ABC ta có:
\(AG=\frac{2}{3}A'A;BG=\frac{2}{3}B'B;CG=\frac{2}{3}CC'\)
Tam giác GAB có :GA+GB>AB
=> \(\frac{2}{3}\left(AA'+BB'\right)>AB\)
Tương tự \(\frac{2}{3}\left(AA'+CC'\right)>AC\)
\(\frac{2}{3}\left(BB'+CC'\right)>BC\)
=> AA'+BB'+CC'>3/4(AB+AC+BC)
Còn hình bạn tự vẽ nha!
Bạn có thể giải thích hộ mình chỗ:
=> AA'+BB'+CC'>3/4(AB+AC+BC) được không ạ. Cảm ơn nhiều.
Bài 2:
a: H là trung điểm của BC
nên HB=HC=2,5(cm)
\(\Leftrightarrow AH=\dfrac{5\sqrt{15}}{2}\left(cm\right)\)
\(S=\dfrac{\dfrac{5\sqrt{15}}{2}\cdot5}{2}=\dfrac{25\sqrt{15}}{4}\left(cm^2\right)\)
b: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//BC
Xét tứ giác BMNC có MN//BC
nên BMNC là hình thang
mà \(\widehat{B}=\widehat{C}\)
nên BMNC là hình thang cân