Chứng minh rằng số tự nhiên A chia hết cho 2009, với:
A=1.2.3...2007.2008(1+1/2+....+1/2007+1/2008)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
lộn cái này mới đúng, bạn chép cái này nhé
Xét B=1+12 +13 +...+12008 =(1+12008 )+(12 +12007 )+...+(11004 +11005 )
=20091.2008 +20092.2007 +...+20091004.1005 =2009.(11.2008 +12.2007 +...+11004.1005 )
quy đồng mẫu số các phân số trong ngoặc: Gọi k1 là thừa số phụ của 11.2008 ;...; k1004 là thừa số phụ của 11004.1005
=> B=2009.k1+k2+...+k10041.2.3.4...2007.2008
=> 1.2.3....2007.2008.2009.k1+k2+...+k10041.2.3...2007.2008 =2009.(k1+k2+...+k1004)
Tổng k1 + k2 + ...+ k1004 là số tự nhiên => A chia hết cho 2009
A=1.2.3....2007.2008.(1+1/2+...1/2007+1/2008)
=[1.2.3....2007.2008.(1+1/2+...1/2007+1/2008) ].2008chia hết cho2008
cho[1.2.3....2007.2008.(1+1/2+...1/2007+1/2008) ] Là B
A=B.2008chia hết cho 2008
=>Achia hết cho 2008
Xét \(B=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2008}=\left(1+\frac{1}{2008}\right)+\left(\frac{1}{2}+\frac{1}{2007}\right)+...+\left(\frac{1}{1004}+\frac{1}{1005}\right)\)
\(=\frac{2009}{1.2008}+\frac{2009}{2.2007}+...+\frac{2009}{1004.1005}=2009.\left(\frac{1}{1.2008}+\frac{1}{2.2007}+...+\frac{1}{1004.1005}\right)\)
quy đồng mẫu số các phân số trong ngoặc: Gọi k1 là thừa số phụ của \(\frac{1}{1.2008}\);...; k1004 là thừa số phụ của \(\frac{1}{1004.1005}\)
=> \(B=2009.\frac{k_1+k_2+...+k_{1004}}{1.2.3.4...2007.2008}\)
=> \(1.2.3....2007.2008.2009.\frac{k_1+k_2+...+k_{1004}}{1.2.3...2007.2008}=2009.\left(k_1+k_2+...+k_{1004}\right)\)
Tổng k1 + k2 + ...+ k1004 là số tự nhiên => A chia hết cho 2009
Xét B=1+1/2+1/3+...+1/2008=(1+1/2008)+(1/2+1/2007)+...+(1/1004+1/1005)
=2009/1.2008+2009/2.2007+...+2009/1004.1005=2009.(1/1.2008+1/2.2007+...+1/1004.1005
Quy đồng mẫu số các phân số trong ngoặc:Gọi k1 là thừa số phụ của 1/1.2008;...k1004 là thừa số phụ của 1/1004.1005
=>B=2009.k1+k2+...+k1004/1.2.3.2007.2008
=>1.2.3.2007.2008.2009.k1+k2+...+k1004/1.2.3.2007.2008=2009(k1+k2+...+k1004)
Tổng k1+k2+...+k1004 là số tự nhiên=>A chia hết cho 2009
nhớ cho một đúng nha
Xét B=1+1/2+1/3+...+1/2008=(1+1/2008)+(1/2+1/2007)+...+(1/1004+1/1005)
=2009/1.2008+2009/2.2007+...+2009/1004.1005=2009.(1/1.2008+1/2.2007+...+1/1004.1005)
Quy đồng mẫu số các phân số trong ngoặc:Gọi k1 là thườ số phụ của 1/1.2008;...k1004 là thừa số phụ của 1/1004.1005
=>B=2009.k1+k2+...+k1004/1.2.3...2007.2008
=>1.2.3...2007.2008.2009.k1+k2+...+k1004/1.2.3...2007.2008=2009.(k1+k2+...+k1004)
Tổng k1+k2+...+k1004 là số tự nhiên =>A chia hết cho2009
Cho một đúng nha
2008^n+1-2008^n=2008^n .2008-2008^n=2008^n(2008-1)=2008^n.2007
==>chia het 2007
Ta có: A=1.2.3.....99.100.(\(1+\dfrac{1}{2}+\dfrac{1}{3}+......+\dfrac{1}{99}+\dfrac{1}{100}\))
\(=1.2.3...100\left[\left(1+\dfrac{1}{100}\right)+\left(\dfrac{1}{2}+\dfrac{1}{99}\right)+......+\left(\dfrac{1}{50}+\dfrac{1}{51}\right)\right]\)
=>A= 1.2...100.\(\left[\dfrac{101}{100}+\dfrac{101}{2.99}+......+\dfrac{101}{50.51}\right]\)
=1.2.....100.101\(\left[\dfrac{1}{100}+\dfrac{1}{2.99}+.....+\dfrac{1}{50.51}\right]⋮101\)
Vậy A chia hết cho 101
Ta có: \(A=1\cdot2\cdot3\cdot...\cdot2007\cdot2008\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2008}\right)\)
\(A=2008!\left[\left(1+\frac{1}{2008}\right)+\left(\frac{1}{2}+\frac{1}{2007}\right)+...+\left(\frac{1}{1004}+\frac{1}{1005}\right)\right]\)
\(A=2008!\left(\frac{2009}{2008}+\frac{2009}{2\cdot2007}+...+\frac{2009}{1004\cdot1005}\right)\)
\(A=\frac{2009!}{2008}+\frac{2009!}{2\cdot2007}+...+\frac{2009!}{1004\cdot1005}\)
\(A=2009\left(2\cdot3\cdot...\cdot2017+3\cdot4\cdot...\cdot2016\cdot2018+2\cdot3\cdot...\cdot1003\cdot1006\cdot...\cdot2018\right)\)
chia hết cho 2019
=> đpcm