Cho a + c = 9, tìm tập hợp A các số tự nhiên b sao cho \(\overline{abc}+\overline{cba}\) là 1 số có 3 chữ số
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Ta có : \(S=\overline{abc}+\overline{bca}+\overline{cab}=111a+111b+111c=111\left(a+b+c\right)=3.37.\left(a+b+c\right)\)
Giải sử S là số chính phương
=> 3(a + b + c ) \(⋮\) 37
Vì 0 < (a + b + c ) \(\le27\)
=> Điều trên là vô lý
Vậy S không là số chính phương
2/ Gọi số đó là abc
Có: \(\overline{abc}-\overline{cba}=\left(100a+10b+c\right)-\left(100c+10b+a\right)\)
\(=100a+10b+c-100c-10b-a=99a-99c=99\left(a-c\right)\)
Sau đó phân tích 99 ra thành các tích của các số và tìm \(a-c\) sao cho \(99\left(a-c\right)\)là một số chính phương (\(a;c\in N\)và \(a-c\le9\)
Ta có:
\(\overline{abc}=100a+10b+c=n^2-1\left(1\right)\)
\(\overline{cba}=100c+10b+a=\left(n-2\right)^2=n^2-4n+4\left(2\right)\)
Từ (1) và (2) suy ra:
\(99a-99c=4n-5\\ \Leftrightarrow99\left(a-c\right)=4n-5\)
Suy ra: \(4n-5⋮99\)
Ta có: \(100\le n^2-1\le999\)
\(\Leftrightarrow101\le n^2\le1000\)
\(\Leftrightarrow11\le n\le31\)
\(\Leftrightarrow44\le4n\le124\)
\(\Leftrightarrow39\le4n-5\le119\)
Suy ra: \(4n-5=99\)
Suy ra: \(n=26\)
Suy ra: \(\overline{abc}=26^2-1=675\)
Câu hỏi của Nguyễn Thị Linh Chi - Toán lớp 6 - Học toán với OnlineMath
Bài 5:
Vì số cần tìm nhỏ nhất nên ta lần lượt thử chọn với các giá trị số nhỏ nhất.
- Giả sử số tự nhiên có dạng 11111a
=> 111110 + a chia hết cho 1987. Vì 111110 chia 1987 dư 1825
=> a chia 1987 dư 162 ( vô lí - 162 > a).
- Giả sử số tự nhiên có dạng 11111ab
=> 1111100 + ab chia hết cho 1987. Vì 1111100 chia 1987 dư 367=> ab chia 1987 dư 1620 ( vô lí - 1620 > ab)
- Giả sử số tự nhiên có dạng 11111abc
=> 11111000 + abc chia hết cho 1987. Vì 11111000 chia 1987 dư 1683
=> abc chia 1987 dư 304. Mà abc nhỏ nhất
=> abc = 304
Vậy số tự nhiên là 11111304
abc+cba=a0c+c0a+10b+10b=909+20b
909+20b là 1 số có 3 chữ số =>20b<100
=>b<5 =>b=0;1;2;3;4
vậy b=0;1;2;3;4
A = \(\overline{abc}\) + \(\overline{cba}\)
A = 100a + 10b +c + 100c + 10b + a
A = 100( a +c) + (c+a) + 20b
A = (a+c) (100 +1) + 20b
A = 9.101 + 20b
A = 909 + 20b
Để A là một số có 3 chữ số thì A \(\le\) 999
\(\Leftrightarrow\) 909 + 20b \(\le\) 999
\(\Leftrightarrow\) 20b \(\le\) 90
\(\Leftrightarrow\)b \(\le\) 9/2
\(\Leftrightarrow\) b \(\in\) { 0; 1; 2; 3; 4}