Cho đoạn thẳng BC, trên nửa mặt phẳng bờ là BC vẽ Bx cắt Cy tại A sao cho góc CBx=2 góc BCy
Kẻ AH vuông góc với BC tại H
Trên tia đối của tia Bx lấy điểm E sao cho BE=BH, EH cắt AC tại D
a, CMR: tam giác HDC; tam giác ADH cân
b, Trên cạnh BC lấy điểm B' sao cho H là trung điểm của BB'
CMR:tam giác ABB' cân
d, CMR : AE = HC
\(\Delta BEH\)có BE = BH\(\Rightarrow\Delta BEH\)cân tại B\(\Rightarrow\widehat{E}=\widehat{H_1}\)
\(\widehat{B_1}\)là góc ngoài của\(\Delta BEH\Rightarrow\widehat{B_1}=\widehat{E}+\widehat{H_1}\Rightarrow2\widehat{C}=2\widehat{H_1}\Rightarrow\widehat{C}=\widehat{H_1}\)mà\(\widehat{H_1}=\widehat{H_2}\)(đối đỉnh)\(\Rightarrow\widehat{H_2}=\widehat{C}\)
\(\Rightarrow\Delta HDC\)cân tại D
\(\Delta AHC\)vuông tại H có\(\widehat{HAC}+\widehat{C}=90^0\)mà\(\widehat{H_2}+\widehat{H_3}=\widehat{AHC}=90^0;\widehat{H_2}=\widehat{C}\Rightarrow\widehat{HAC}=\widehat{H_3}\)
\(\Rightarrow\Delta ADH\)cân tại D
b)\(\Delta AHB,\Delta AHB'\)vuông tại H có AH chung ; HB = HB' (H là trung điểm BB')\(\Rightarrow\Delta AHB=\Delta AHB'\left(2cgv\right)\)
\(\Rightarrow\widehat{B_1}=\widehat{B'_1}\)(2 góc tương ứng)\(\Rightarrow\Delta ABB'\)cân tại A
c)\(\widehat{B'_1}\)là góc ngoài\(\Delta AB'C\)nên\(\widehat{B'_1}=\widehat{A_1}+\widehat{C}\Rightarrow\widehat{A_1}=\widehat{B'_1}-\widehat{C}=\widehat{B_1}-\widehat{C}=2\widehat{C}-\widehat{C}=\widehat{C}\)
\(\Rightarrow\Delta AB'C\)cân tại B' => B'C = AB' = AB (\(\Delta ABB'\)cân tại A) mà HB' = BH = BE
=> B'C + HB' = AB + BE hay HC = AE
Bạn vẽ cái hình đi bạn :(