K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2017

ta có 89 mũ 2 tận cùng là 1 nên 89 mũ 26 tận cùng là 1  . 45 mũ 21 tận cùng là 5 .nên 89 mũ 26 -45 mũ 21 chẵn nên 89 mũ 26 -45 mũ 21 chia hết cho 2

28 tháng 2 2017

ta có 89^26=(89^2)^13=(...1)^13=(...1)

45^21=(...5)

89^26-45^21=...1-...5=...6

31 tháng 8 2021

a) \(A=4+4^2+4^3+...+4^{60}=4\left(1+4+4^2+...+4^{59}\right)⋮4\)

b) \(A=4+4^2+4^3+...+4^{60}=4\left(1+4\right)+4^3\left(1+4\right)+...+4^{59}\left(1+4\right)=4.5+4^3.5+...+4^{59}.5=5\left(4+4^3+...+4^{59}\right)⋮5\)

c) \(A=4+4^2+4^3+...+4^{60}=4\left(1+4+4^2\right)+4^4\left(1+4+4^2\right)+...+4^{58}\left(1+4+4^2\right)=4.21+4^4.21+...+4^{58}.21=21\left(4+4^4+...+4^{58}\right)⋮21\)

31 tháng 8 2021

thanks bạn rất nhiều mik kb với bạn đc ko

 

4 tháng 1 2017

Mình chỉ làm được ý 3 thôi: 

4 tháng 1 2017

A = 21 + 22 + 23 + ................ + 2120

Chứng minh chia hết cho 7

A = 21 + 22 + 23 + ................ + 2120

A = (21 + 22 + 23) + (24 + 25 + 26) + ................ + (2118 + 2119 + 2120)

A = 2.(1 + 2 + 4) + 24.(1 + 2 + 4) + ................. + 2118.(1 + 2 + 4)

A = 2.7 + 24 . 7 + ................ + 2118.7

A = 7.(2 + 24 + ........... + 2118)

Chứng minh chia hết cho 31

A = 21 + 22 + 23 + ................ + 2120 

A = (21 + 22 + 23 + 24 + 25) + (26 + 27 + 28 + 29 + 210) + ................ + (2116 + 2117 + 2118 + 2119 + 2120)

A = 2.(1 + 2 + 4 + 8 + 16) + 26.(1 + 2 +4 + 8 + 16) + ............. + 2116.(1 + 2 + 4 + 8 + 16)

A = 2.31 + 26.31 + ....... + 2116 . 31

A = 31.(2 + 26 + ........... + 2116)

29 tháng 6 2017

1) A = 120a + 36b

=> A = 12.10.a + 12.3.b

=> A = 12.(10a+3b)

Do 12.(10a+3b) \(⋮\)12

nên 120a+36b \(⋮\)12

2) Gọi (2a+7b) là (1)

         (4a+2b) là (2)

Xét (1), ta có: 2a+7b = 2.(2a+7b) = 4a + 14b (3)

Lấy (3) - (1), ta có: (4a+14b) - (4a+2b) = 12b \(⋮\)3

Hay 4a+2b chia hết cho 3 

3) Gọi (a+b) là (1)

          (a+3b) là (2)

Lấy (2) - (1), ta có: (a+3b) - (a+b) = 2b \(⋮\)2

Hay (a+3b) chia hết cho 2

1 tháng 10 2018

Ta có: \(2^{17}+2^{14}\)

\(=2^{14}\left(2^3+1\right)=2^{14}\times9⋮9\)

\(15^3-25^2\)

\(=3^3.5^3-5^4\)

\(=5^3\left(27-5\right)=5^3.2.11⋮11\)

1 tháng 10 2018

\(2^{17}+2^{14}=2^{14}\left(2^3+1\right)=2^{14}\cdot9\Rightarrow2^{17}+2^{14}⋮9\)