1000 : [30 + (2x - 6)] = 32 + 42 và x ϵ N
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1000 : [30 + (2x - 6)] = 32 + 42
= 1000 : [ 30 + (2x-6)] = 9 + 16 = 25
= 30 + (2x - 6) = 1000 : 25 = 40
= 2x - 6 = 40 - 30 = 10
2x = 10 + 6 = 16
⇒ 2x = 24
⇒ x = 4
\(2,\)
\(a,20-\left[4^2+\left(x-6\right)\right]=90\)
\(\Rightarrow20-16-x+6=90\)
\(\Rightarrow10-x=90\)
\(\Rightarrow x=-80\)
Vậy: \(x=-80\)
\(b,\left(x+3\right)\left(2x-4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+3=0\\2x-4=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\)
Vậy: \(x\in\left\{-3;2\right\}\)
\(c,1000:\left[30+\left(2^x-6\right)\right]=3^2+4^2\left(x\in N\right)\)
\(\Rightarrow1000:\left(30+2^x-6\right)=25\)
\(\Rightarrow24+2^x=40\)
\(\Rightarrow2^x=16\)
\(\Rightarrow x=4\)
Vậy: \(x=4\)
\(2,\)
\(a,20-\left[42+\left(x-6\right)\right]=90\)
\(\Rightarrow20-42-x+6-90=0\)
\(\Rightarrow x=-106\)
Vậy: \(x=-106\)
\(b,\left(x+3\right)\left(2x-4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+3=0\\2x-4=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\)
Vậy: \(x\in\left\{-3;2\right\}\)
\(c,1000:\left[30+\left(2x-6\right)\right]=32+42\left(x\in N\right)\)
\(\Rightarrow1000:\left(30+2x-6\right)=74\)
\(\Rightarrow1000:\left(24+2x\right)=74\)
\(\Rightarrow24+2x=\dfrac{500}{37}\)
\(\Rightarrow2x=-\dfrac{388}{37}\)
\(\Rightarrow x=-\dfrac{194}{37}\)
Mà \(x\in N\)
\(\Rightarrow x\in\varnothing\)
Vậy: \(x\in\varnothing\)
\(\dfrac{1}{4}\cdot\dfrac{2}{6}\cdot\dfrac{3}{8}\cdot\dfrac{4}{10}\cdot...\cdot\dfrac{14}{30}.\dfrac{15}{32}=\dfrac{1}{2^x}\)
\(\Rightarrow\dfrac{1\cdot2\cdot3\cdot4\cdot...\cdot14\cdot15}{4\cdot6\cdot8\cdot10\cdot...\cdot30\cdot32}=\dfrac{1}{2^x}\)
\(\Rightarrow\dfrac{1\cdot2\cdot3\cdot4\cdot...\cdot14\cdot15}{2\cdot4\cdot6\cdot8\cdot10\cdot...\cdot30\cdot32}=\dfrac{1}{2^{x+1}}\)
\(\Rightarrow\dfrac{1}{2^{15}\cdot32}=\dfrac{1}{2^{x+1}}\)
\(\Rightarrow2^{15}.2^5=2^{x+1}\)
\(\Rightarrow2^{20}=2^{x+1}\)
\(\Rightarrow x+1=20\Rightarrow x=19\)
Vậy x = 19.
\(1000:\text{[}30+\left(2^x-6\right)\text{]}=3^2+4^2\)
\(1000:\text{[}30+\left(2^x-6\right)\text{]}=9+16\)
\(1000:\text{[}30+\left(2^x-6\right)\text{]}=25\)
\(\text{ }30+\left(2^x-6\right)\text{ }=40\)
\(2^x-6=10\)
\(2^x=16\)
\(=>2^x=2^4\)
\(=>x=4\)
\(1000:\left[30+\left(2^x-6\right)\right]=3^2+4^2\\ 1000:\left[30+\left(2^x-6\right)\right]=9+16\\ 1000:\left[30+\left(2^x-6\right)\right]=25\\ 30+\left(2^x-6\right)=1000:25\\ 30+\left(2^x-6\right)=40\\ 2^x-6=40-30\\ 2^x-6=10\\ 2^x=10+6\\ 2^x=16\\ 2^x=2^4\\ x=4\)