Tính tổng 1.2.3+2.3.4+3.4.5+...+48.49.50 rồi kiểm tra xem tổng chia hết cho số nào sau đây:2;3;4;5;6;8;9;10;11
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt S= 1.2.3+2.3.4+…+99.100+101
=>4S=1.2.3.4+2.3.4.4+…+99.100.101.4
=>4S=1.2.3.(4-0)+2.3.4.(5-1)+…+99.100.101.(102-98)
=>4S=1.2.3.4-0.1.2.3+2.3.4.5-1.2.3.4+…+99.100.101.102-98.99.100
=>4S=(1.2.3.4-1.2.3.4)+(2.3.4.5-2.3.4.5)+…+(98.99.100-98.99.100)+99.100.101
=>4S=99.100.101
=>4S=999900
=> S=999900:4
=> S=249975
Ta thấy: 249975 chia hết cho 3,5,9,11,15
Vậy 1.2.3+2.3.4+…+99.100+101=249975 và tổng trên chia hết cho 3,5,9,11,15.
l-i-k-e cho ình nha bạn.
nhân 3 vào mỗi hạng tử ta được:
3*(1.2+2.3+3.4+...+99.100)
= 1.2.(3-0)+ 2.3.(4-1)+ 3.4.(5-2)+... + 99.100.(101-98)
=1.2.3 + 2.3.4 -1.2.3 + 3.4.5 -2.3.4 +... + 99.100.101 - 98.99.100
= 99.100.101
Vậy tổng ban đầu 99.100.101/3= 33.100.101
Vậy tổng trên chia hết cho 2;3;4;5;10
Đặt A=1.2.3+2.3.4+3.4.5+........+48.49.50
4A=1.2.3.4+2.3.4.4+..........+48.49.50.4
=1.2.3.4+2.3.4.(5-1)+.........+48.49.50.(51-47)
=1.2.3.4+2.3.4.5-1.2.3.4+...........+48.49.50.51-47.48.49.50
=48.49.50.51
=5997600
A=1499400
Vậy A=1499400
Đặt \(A=1\cdot2\cdot3+2\cdot3\cdot4+........+48\cdot49\cdot50\)
\(\Rightarrow4A=1\cdot2\cdot3\cdot4+2\cdot3\cdot4\cdot4+......+48\cdot49\cdot50\cdot4\)
\(=1\cdot2\cdot3\cdot4+2\cdot3\cdot4\cdot\left(5-1\right)+..........+48\cdot49\cdot50\cdot\left(51-47\right)\)
\(=1\cdot2\cdot3\cdot4+2\cdot3\cdot4\cdot5-1\cdot2\cdot3\cdot4+......+48\cdot49\cdot50\cdot51-47\cdot48\cdot49\cdot50\)
\(=48\cdot49\cdot50\cdot51\)
\(\Rightarrow A=\frac{48\cdot49\cdot50\cdot51}{4}\)
đặt A = 1.2.3 + 2.3.4 + 3.4.5 + ... + 48.49.50
4A = 1.2.3.4 + 2.3.4.4 + 3.4.5.4 + ...+ 48.49.50.4
4A = 1.2.3.4 + 2.3.4.(5-1) + 3.4.5.(6-2) + ... + 48.49.50.(51-47)
4A = 1.2.3.4 + 2.3.4.5 - 1.2.3.4 + 3.4.5.6 - 2.3.4.5 + ... + 48.49.50.51 - 47.48.49.50
4A = 48.49.50.51
A = \(\frac{48.49.50.51}{4}\)
A = 1499400
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{48.49}-\frac{1}{49.50}\right)\\ =\frac{1}{2}\left(\frac{1}{2}-\frac{1}{2450}\right)\)
\(=\frac{1}{2}.\frac{612}{1225}\\ =\frac{306}{1225}\)(mà đây là toán 6 mà :V)
\(Z=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{48.49.50}\)
\(=\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{48.49.50}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{48.49}-\frac{1}{49.50}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{49.50}\right)=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{2450}\right)=\frac{1}{2}\left(\frac{2450}{2450}-\frac{1}{2450}\right)\)
\(=\frac{1}{2}.\frac{2449}{2450}=\frac{2449}{4900}\)
Z = 1/1.2.3 + 1/2.3.4 + 1/3.4.5 + ... + 1/98.99.100
Áp dụng phương pháp khử liên tiếp: viết mỗi số hạng thành hiệu của hai số sao cho số trừ ở nhóm trước bằng số bị trừ ở nhóm sau.
Ta xét:
1/1.2 - 1/2.3 = 2/1.2.3; 1/2.3 - 1/3.4 = 2/2.3.4;...; 1/98.99 - 1/99.100 = 2/98.99.100
tổng quát: 1/n(n+1) - 1/(n+1)(n+2) = 2/n(n+1)(n+2). Do đó:
2Z = 2/1.2.3 + 2/2.3.4 + 2/3.4.5 +...+ 2/98.99.100
= (1/1.2 - 1/2.3) + (1/2.3 - 1/3.4) +...+ (1/98.99 - 1/99.100)
= 1/1.2 - 1/2.3 + 1/2.3 - 1/3.4 + ... + 1/98.99 - 1/99.100
= 1/1.2 - 1/99.100
= 1/2 - 1/9900
= 4950/9900 - 1/9900
= 4949/9900.
Vậy Z = \(\frac{4949}{9900}\)