K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
30 tháng 4 2021

ĐKXĐ: \(x\ne\left\{0;-5\right\}\)

\(\Leftrightarrow\dfrac{11}{x^2}-\left[1-\dfrac{10}{x+5}+\left(\dfrac{5}{x+5}\right)^2+\dfrac{10}{x+5}\right]=0\)

\(\Leftrightarrow\dfrac{11}{x^2}-\left[\left(1-\dfrac{5}{x+5}\right)^2+\dfrac{10}{x+5}\right]=0\)

\(\Leftrightarrow\dfrac{11}{x^2}-\dfrac{10}{x+5}-\left(\dfrac{x}{x+5}\right)^2=0\)

\(\Leftrightarrow\left(\dfrac{1}{x}-\dfrac{x}{x+5}\right)\left(\dfrac{11}{x}+\dfrac{x}{x+5}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{x}-\dfrac{x}{x+5}=0\\\dfrac{11}{x}+\dfrac{x}{x+5}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-x-5=0\\x^2+11x+55=0\end{matrix}\right.\)

\(\Leftrightarrow...\) (bấm máy)

11 tháng 4 2022

cái dòng th3 sao phân tích ra đc v ạ??

\(\Leftrightarrow2x^2+10x-x^2+6x-9=x^2+6\)

=>16x-9=6

=>16x=15

hay x=15/16

4 tháng 3 2022

\(PT\Leftrightarrow2x^2+10x-x^2+6x-9-x^2-6=0.\)

\(\Leftrightarrow16x-15=0.\\ \Leftrightarrow x=\dfrac{15}{16}.\)

22 tháng 4 2022

a.\(x^2-25=8\left(5-x\right)\)

\(\Leftrightarrow\left(x-5\right)\left(x+5\right)-8\left(5-x\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+5\right)+8\left(x-5\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+13\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-13\end{matrix}\right.\)

b.\(\dfrac{x-2}{x+2}-\dfrac{2\left(x-11\right)}{x^2-4}=\dfrac{3}{x-2}\) ; \(ĐK:x\ne\pm2\)

\(\Leftrightarrow\dfrac{\left(x-2\right)\left(x-2\right)-2\left(x-11\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)

\(\Leftrightarrow\left(x-2\right)^2-2\left(x-11\right)=3\left(x+2\right)\)

\(\Leftrightarrow x^2-4x+4-2x+22=3x+6\)

\(\Leftrightarrow x^2-9x+20=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5\left(tm\right)\\x=4\left(tm\right)\end{matrix}\right.\)

 

20 tháng 5 2021

1) \(9x^4+8x^2-1=0\)

\(\Leftrightarrow9x^4+9x^2-x^2-1=0\)

\(\Leftrightarrow9x^2\left(x^2+1\right)-\left(x^2+1\right)=0\)

\(\Leftrightarrow\left(x^2+1\right)\left(9x^2-1\right)=0\)

\(\Rightarrow9x^2-1=0\)

\(\Leftrightarrow x=\dfrac{\pm1}{3}\)

Vậy...

2)  \(\Delta=\left(m-1\right)^2-4\left(-m^2+m-1\right)\) \(=5m^2-6m+5\)

Có: \(5m^2-6m+5=5\left(m^2-\dfrac{6}{5}m+\dfrac{9}{25}\right)+\dfrac{16}{5}\)

\(=5\left(m-\dfrac{3}{5}\right)^2+\dfrac{16}{5}\ge\dfrac{16}{5}>0\forall m\in R\)

\(\Rightarrow\Delta>0\forall m\in R\)

Vậy: PT luôn có 2 nghiệm phân biệt với mọi m.

 

 

3 tháng 4 2022

\(x^2-x+1-m=0\left(1\right)\\ \text{PT có 2 nghiệm }x_1,x_2\\ \Leftrightarrow\Delta=1-4\left(1-m\right)\ge0\\ \Leftrightarrow4m-3\ge0\Leftrightarrow m\ge\dfrac{3}{4}\\ \text{Vi-ét: }\left\{{}\begin{matrix}x_1+x_2=1\\x_1x_2=1-m\end{matrix}\right.\\ \text{Ta có }5\left(\dfrac{1}{x_1}+\dfrac{1}{x_2}\right)-x_1x_2+4=0\\ \Leftrightarrow5\cdot\dfrac{x_1+x_2}{x_1x_2}-x_1x_2+4=0\\ \Leftrightarrow\dfrac{5}{1-m}+m-1+4=0\\ \Leftrightarrow\dfrac{5}{1-m}+m+3=0\\ \Leftrightarrow5+\left(1-m\right)\left(m+3\right)=0\\ \Leftrightarrow m^2+2m-8=0\\ \Leftrightarrow m^2-2m+4m-8=0\\ \Leftrightarrow\left(m-2\right)\left(m+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}m=2\left(n\right)\\m=-4\left(l\right)\end{matrix}\right.\)

Vậy $m=2$

10 tháng 6 2021

để \(\left|8-x\right|=8-x< =>8-x\ge0< =>x\le8\)

\(=>8-x=x^2+x< =>x^2+2x-8=0\)

\(< =>\left(x+1\right)^2-3^2=0< =>\left(x-2\right)\left(x+4\right)=0\)

\(=>\left[{}\begin{matrix}x=2\left(TM\right)\\x=-4\left(TM\right)\end{matrix}\right.\)

*để\(\left|8-x\right|=x-8< =>8-x< 0< =>x>8\)

\(=>x-8=x^2+x< =>x^2=-8\)(vô lí)

vậy x=2 hoặc x=-4

6 tháng 3 2022

\(a,3x-2\left(x-3\right)=0\\ \Leftrightarrow3x-2x+6=0\\ \Leftrightarrow x=-6\\ b,\left(x+1\right)\left(2x-3\right)=\left(2x-1\right)\left(x+5\right)\\ \Leftrightarrow2x^2+2x-3x-3=2x^2-x+10x-5\\ \Leftrightarrow2x^2-x-3=2x^2+9x-5\\ \Leftrightarrow10x-2=0\\ \Leftrightarrow x=\dfrac{1}{5}\\ c,ĐKXĐ:x\ne\pm1\\ \dfrac{2x}{x-1}-\dfrac{x}{x+1}=1\\ \Leftrightarrow\dfrac{2x\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}-\dfrac{x\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}-\dfrac{\left(x+1\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}=0\\ \Leftrightarrow\dfrac{2x^2+2x-x^2+x-x^2+1}{\left(x+1\right)\left(x-1\right)}=0\)

\(\Rightarrow3x+1=0\\ \Leftrightarrow x=-\dfrac{1}{3}\left(tm\right)\)

\(d,\left(2x+3\right)\left(3x-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x+3=0\\3x-5=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{5}{3}\end{matrix}\right.\\ e,ĐKXĐ:x\ne\pm2\\ \dfrac{x-2}{x+2}-\dfrac{3}{x-2}=\dfrac{2\left(x-11\right)}{x^2-4}\\ \Leftrightarrow\dfrac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}-\dfrac{3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{2x-22}{\left(x-2\right)\left(x+2\right)}=0\)

\(\Leftrightarrow\dfrac{x^2-4x+4-3x-6-2x+22}{\left(x-2\right)\left(x+2\right)}=0\\ \Rightarrow x^2-9x+20=0\\ \Leftrightarrow\left(x^2-5x\right)-\left(4x-20\right)=0\\ \Leftrightarrow x\left(x-5\right)-4\left(x-5\right)=0\\ \Leftrightarrow\left(x-4\right)\left(x-5\right)\\ \Leftrightarrow\left[{}\begin{matrix}x=4\left(tm\right)\\x=5\left(tm\right)\end{matrix}\right.\)

 

12 tháng 4 2022

a) thay m= -2 vào pt , ta có :
→x+( -2-1)x+5.(-2)-6=0
↔x2-3x-16=0
Δ=(-3)2-4.1.(-16)
Δ=9+64
Δ=73 > 0
vì delta > 0 nên ta có 2 nghiệm phân biệt
x1=\(\dfrac{3+\sqrt{73}}{2.1}\)=\(\dfrac{3+\sqrt{73}}{2}\)
x2=\(\dfrac{3-\sqrt{73}}{2}\)
b)Hệ thức vi et :
x1+x2=\(\dfrac{-b}{a}=\dfrac{-\left(m-1\right)}{1}=-m+1\)(1)
x1.x2=\(\dfrac{c}{a}=\dfrac{5m-6}{1}=5m-6\)(2)
Ta có : 4x1+3x2=1(3)
Từ (1) và (3) , ta có hệ pt 
\(\left\{{}\begin{matrix}x1+x2=-m+1 \\4x1+3x2=1\end{matrix}\right. \)
\(\left\{{}\begin{matrix}3x_1+3x_2=-3m+3\\4x_1+3x_2=1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x_1=3m-2\\x_1+x_2=-m+1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x_1=3m-2\\x_2=-4m+3\end{matrix}\right.\)
Ta thay x1 x2 vào (2) , ta có :
➝(3m-2).(-4m+3)=5m-6
↔-12m2+12m=0
↔12m(-m+1)=0
-> 12m=0 -> m=0
-> -m+1=0 ->m=1 
Vậy m = 0 và m =1 thì sẽ tm hệ thức

14 tháng 3 2022

3x(2-x)-5=1-(3x2+2)

<=>6x-3x2-5=-3x2-2

<=>6x=3

<=>x=1/2

2 tháng 1 2022

Vì \(x_1\) là nghiệm PT nên \(x_1^2+3x_1-7=0\Leftrightarrow x_1^2=7-3x_1\)

\(F=x_1^2-3x_2-2013=7-3x_1-3x_2-2013\\ F=-3\left(x_1+x_2\right)-2006\)

Mà theo Viét ta có \(x_1+x_2=-3\)

\(\Rightarrow F=\left(-3\right)\left(-3\right)-2006=-1997\)