K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2021

áp dụng định lý py-ta-go cho ΔABC vuông tại A ta có:

BC2=AB2+AC2

102=62+AB2

100=36+AB2

hay AB2=100-36=64

⇒AB=\(\sqrt{64}\)=8

vậy AB=8

xét ΔACK và ΔBDK có:

KD=KC(giả thuyết)

KA=KB(CK là trung tuyến)

\(\widehat{AKC}\)=\(\widehat{BKD}\)(2 goc đối đỉnh)

⇒ΔACK=ΔBDK(c-g-c)

⇒AC=BD(2 cạnh tương ứng)

xét ΔCBD có

BC+DC>CD(bất đẳng thức tam giác)

Mà DC=2KC;AC=BD

⇒AC+BC>2CK(điều phải chứng minh)

 

30 tháng 4 2021

thank

29 tháng 5 2022

a,

Xét Δ ABC vuông tại A, có :

\(BC^2=AB^2+AC^2\) (Py - ta - go)

=> \(10^2=AB^2+6^2\)

=> AB = 8 (cm)

b,

Xét Δ MAC và Δ MBD, có :

MD = MC (gt)

MA = MB (M là trung tuyến của AB)

\(\widehat{AMC}=\widehat{BMD}\) (đối đỉnh)

=> Δ MAC = Δ MBD (c.g.c)

c,

Ta có : AM = 2AB

=> AM = 4 (cm)

Xét Δ AMC vuông tại A, có :

\(CM^2=AM^2+AC^2\) (Py - ta - go)

=> \(CM^2=4^2+6^2\)

=> CM ≈ 7,2 (cm)

Ta có :

AC + BC = 6 + 10 = 16 (cm)

2CM ≈ 7,2 x 2 ≈ 14,4 (cm)

=> AC + BC > 2CM

29 tháng 5 2022

cảm ơn ạ :3 yeu

a: AB=căn 10^2-6^2=8cm

=>BM=4cm

b: Xét ΔMAC và ΔMBD có

MA=MB

góc AMC=góc BMD

MC=MD

=>ΔMAC=ΔMBD

c: AC+BC=BD+BC>CD=2CM

a: AB=8cm

b: Xét ΔMAC và ΔMBD có 

MA=MB

\(\widehat{AMC}=\widehat{BMD}\)

MC=MD

Do đó: ΔMAC=ΔMBD

3 tháng 1 2022

a) Xét tam giác ABC vuông tại A:

\(AB^2+AC^2=BC^2\) (Định lí Pytago).

Thay: \(AB^2+6^2=10^2.\Leftrightarrow AB=\sqrt{10^2-6^2}=8\left(cm\right).\)

b) CM là đường trung tuyến của tam giác ABC vuông tại A (gt).

\(\Rightarrow\) M là trung điểm của AB.

Xét tam giác MAC và tam giác MBD:

+ MA = MB (M là trung điểm của AB).

+ MC = MD (gt).

\(\widehat{AMC}=\widehat{BMD}\) (2 góc đối đỉnh).

\(\Rightarrow\) Tam giác MAC = Tam giác MBD (c - g - c).

19 tháng 4 2019

a, áp dụng định lí py-ta-go ta có:

            \(BC^2\)=\(AB^2+AC^2\)

=>    \(AC^2=BC^2-AB^2\)

=>    \(AC^2=100-36\)

=>    \(AC^2=64\)cm => AC=8 cm

vậy AC=8 cm

vì BC>AC>AB(10cm>8cm>6cm)

=> \(\widehat{A}\)>\(\widehat{B}\)>\(\widehat{C}\)(góc đối diện vs cạnh lớn hơn là góc lớn hơn) đpcm

b, Xét 2 t.giác vuông BCA và DCA có:

               AB=AD(gt)

              AC cạnh chung

=> \(\Delta\)BCA=\(\Delta\)DCA(cạnh góc vuông-cạnh góc vuông)

=> BC=DC(2 cạnh tương ứng)

=>t.giác BCD cân tại C (đpcm)

19 tháng 4 2019

c, xét t.giác BCD : A là trung điểm BD, K là trung điểm của BC, AC và DK cắt nhau tại M

=> M là trọng tâm của \(\Delta\)BCD => MC=\(\frac{2}{3}\)AC(tính chất 3 đường trung tuyến)

=> MC=\(\frac{2}{3}\).8\(\approx\)5,3 cm

vậy MC\(\approx\)5,3 cm

a: \(AC=\sqrt{10^2-6^2}=8\left(cm\right)\)

b: Xét ΔHAC vuông tại H và ΔHDC vuông tại H có

CH chung

HA=HD

DO đó: ΔHAC=ΔHDC

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AC^2+AB^2\)

\(\Leftrightarrow AB^2=10^2-6^2=64\)

hay AB=8(cm)

mà N là trung điểm của AB(gt)

nên \(BN=\dfrac{AB}{2}=\dfrac{8}{2}=4\left(cm\right)\)

b) Xét ΔANC và ΔBND có

NA=NB(gt)

\(\widehat{ANC}=\widehat{BND}\)(hai góc đối đỉnh)

NC=ND(gt)

Do đó: ΔANC=ΔBND(c-g-c)

Suy ra: AC=BD(hai cạnh tương ứng) và \(\widehat{ACN}=\widehat{BDN}\)(hai góc tương ứng)

mà hai góc này là hai số ở vị trí so le trong

nên AC//BD(Dấu hiệu nhận biết hai đường thẳng song song)

loading...

c: Xét ΔCAB vuông tại A và ΔCAD vuông tại A có

CA chung

AB=AD

=>ΔCAB=ΔCAD