K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2017

=(1+1)+(2+2)+......+(100+100)

=2+4+6+8+....+200

=((200-2)/2+1)*(200+2)/2=10100

Ket qua la 10100 nhe ban. Nho k cho minh nhe

19 tháng 2 2017

khó thế bạn

24 tháng 5 2022

ko hỉu

24 tháng 5 2022

de thiu em a

18 tháng 1 2016

câu nào dạng cũng giống nhau, ko biết 1 câu là ko giải đc toàn bộ

8 tháng 8 2017

\(a,\)Đặt \(A=1+2+2^2+...+2^{99}+2^{100}\)

\(\Rightarrow2A=2+2^2+...+2^{100}+2^{101}\)

\(\Rightarrow2A-A=\left(2+2^2+2^3+...+2^{101}\right)-\left(1+2+2^2+...2^{100}\right)\)

\(\Rightarrow A=2^{101}-1\)

\(b,\)Đặt \(B=5+5^3+5^5+...+5^{97}+5^{99}\)

\(\Rightarrow5^2B=5^3+5^5+...+5^{99}+5^{101}\)

\(\Rightarrow25B-B=\left(5^3+5^5+...+5^{99}+5^{101}\right)-\left(5+5^3+...+5^{99}\right)\)

\(\Rightarrow24B=5^{101}-5\)

\(\Rightarrow B=\frac{5^{101}-5}{24}\)

7 tháng 12 2017

bn hâm mộ cùng phim với mink a

4 tháng 10 2022

ai bt tự làm

 

15 tháng 4 2023

ngu tự chịu

4 tháng 11 2017

mình nghĩ = -2525

4 tháng 11 2017

ai biet giai nhanh ma ro ra nhe

17 tháng 9 2017

a)Ta thấy: 101+100+99+98+...+3+2+1 có(101-1+1=101 số) tổng của tử số của A là: (101+1).101:2=5151.

Mẫu số cũng có số hạng bằng số hạng tử số,có số cặp ở mẫu là:101:2=50(dư 1 số)(số 1).

Vậy tổng mẫu số của A là : (101-100).50+1=51.Vậy A=5151:51=101 

b) 3737.43-4343.37/2+4+6+...+100=101.37.43-101.43.37/2+4+6+...+100=101.(43.37-37.43)/2+4+6+...+100=0/2+4+6+...+100=0

31 tháng 12 2018

a)Ta thấy: 101+100+99+98+...+3+2+1 có(101-1+1=101 số) tổng của tử số của A là:

(101+1).101:2=5151.

Mẫu số cũng có số hạng bằng số hạng tử số,có số cặp ở mẫu là:

101:2=50(dư 1 số)(số 1).

Vậy tổng mẫu số của A là :

(101-100).50+1=51.Vậy A=5151:51=101 

b) 3737.43-4343.37/2+4+6+...+100=101.37.43-101.43.37/2+4+6+...+100=101.(43.37-37.43)/2+4+6+...+100=0/2+4+6+...+100=0

23 tháng 8 2017

câu 1 :1/100

câu 2 :1

23 tháng 8 2017

b)ta đặt A:  \(A=\frac{1}{99}+\frac{2}{98}+..+\frac{99}{1}\)

                   \(A=\left(\frac{1}{99}+1\right)+\left(\frac{2}{98}+1\right)+..+\left(\frac{98}{2}+1\right)+\left(\frac{99}{1}-98\right)\)

                  \(A=\frac{100}{99}+\frac{100}{98}+..+\frac{100}{2}+\frac{100}{100}\)

                  \(A=100\cdot\left(\frac{1}{100}+\frac{1}{99}+\frac{1}{98}+..+\frac{1}{2}\right)\)