K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 1 2021

A B C O Q P F E D

Từ A kẻ đường thẳng // BC cắt BO, CO kéo dài tại P và Q

Theo định lý Thales ta có: \(\frac{DB}{DC}=\frac{AP}{AQ},\frac{EC}{EA}=\frac{BC}{AP},\frac{FA}{FB}=\frac{AQ}{BC}\)

Nhân 3 đẳng thức vs nhau ta đc: 

\(\frac{DB}{DC}.\frac{EC}{EA}.\frac{FA}{FB}=\frac{AP}{AQ}.\frac{BC}{AP}.\frac{AQ}{BC}=1\) ( ĐPCM)

AH
Akai Haruma
Giáo viên
15 tháng 2 2021

Lời giải:

a) Vì $FN\parallel AC$ nên áp dụng định lý Talet:

\(\frac{NC}{NB}=\frac{FA}{FB}=\frac{DB}{DC}\)

Nếu $NB=DC$ thì do $MB=MC$ nên $MB-NB=MC-DC$

$\Leftrightarrow MN=MD$ nên $M$ là trung điểm $DN$.

Nếu $NB\neq DC$ thì áp dụng TCDTSBN: $\frac{NC}{NB}=\frac{DB}{DC}=\frac{NC-DB}{NB-DC}=\frac{DC-NB}{NB-DC}=-1< 0$ (vô lý)

Vậy ta có đpcm. 

b) 

Vì $M$ là trung điểm $DN$, $P$ là trung điểm $DF$ nên $MP$ là đtb ứng với cạnh $FN$

$\Rightarrow MP\parallel FN$ và $MP=\frac{1}{2}FN(1)$ 

Mặt khác:

$FN\parallel AC\Rightarrow FN\parallel AE(2)$

$\frac{NC}{NB}=\frac{FA}{FB}=\frac{EC}{EA}$ nên theo Talet đảo thì $EN\parallel AB$ hay $EN\parallel AF(3)$

Từ $(2); (3)$ suy ra $AENF$ là hình bình hành nên $AE=FN(4)$

Từ $(1); (2);(4)$ suy ra $MP\parallel AE$ và $MP=\frac{1}{2}AE$ (đpcm)

c) Gọi $G$ là giao điểm $AM$ và $EP$. Theo định lý Talet:

$\frac{AG}{GM}=\frac{EG}{GP}=\frac{AE}{MP}=2$

$\Rightarrow \frac{AG}{AM}=\frac{EG}{EP}=\frac{2}{3}$

Do đó $G$ chính là trọng tâm của $ABC$ và $DEF$. Ta có đpcm. 

 

AH
Akai Haruma
Giáo viên
15 tháng 2 2021

Hình vẽ:

undefined

5 tháng 7 2020

Tự vẽ hình chỉ bt làm ý a,c, thôi thông cảm T^T

a,Xét ΔHAB và ΔABC

\(\widehat{BHA}=\widehat{BAH}=90^o\)

Góc B chung

\(\Rightarrow\Delta HBA\text{∼ }\Delta ABC\)

c,Xét ΔABC ta có:

BC2=AC2+AB2

BC2=162+122

BC2=400

BC=√400=20cm

Ta có ΔHAB~ΔABC(câu a)

\(\Rightarrow\frac{AH}{AC}=\frac{AB}{BC}\Leftrightarrow\frac{AH}{16}=\frac{12}{20}\)

\(\Rightarrow AH=\frac{12.16}{20}=9,6cm\)

a.Xét \(\Delta HBA\)và \(\Delta ABC\)

\(\widehat{BHA}=\widehat{BAC}=90^0\)

\(\widehat{B}\) chung

Do đó \(\Delta HBA\)đồng dạng \(\Delta ABC\)\((\)g.g\()\)

b.Từ \(\Delta HBA\)đồng dạng \(\Delta ABC\)

\(\Rightarrow\frac{AH}{AC}=\frac{AB}{BC}\)

\(\Rightarrow AH.BC=AB.AC\)

c.Xét \(\Delta ABC\),có \(\widehat{A}\)=90 độ , theo định lý py -ta -go,ta có

\(BC^2=AB^2+AC^2\)

\(BC^2=12^2+16^2\)

\(BC^2=400\)\(\Rightarrow BC=\sqrt{400}\)

\(BC=20cm\)

Ta có \(\frac{AH}{AC}=\frac{AB}{BC}\Leftrightarrow\frac{AH}{16}=\frac{12}{20}\)

\(\Rightarrow AH=\frac{12\times16}{20}\)

\(\Rightarrow AH=9,6cm\)

Chúc bạn học tốt.Phần d mình chưa giải đc nha

a: Xét ΔABD và ΔACB có

góc ABD=góc ACB

góc BAD chung

=>ΔABD đồng dạng với ΔACB

=>AB/AC=AD/AB

Xét ΔABD có AF là phân giác

nên FD/FB=AD/AB

Xét ΔABC có AE là phân giác

nên EB/EC=AB/AC

=>EB/EC=FD/FB

8 tháng 7 2018

mọi người làm giúp em với ạ

31 tháng 3 2019

a)xét tam giác ADB và tam giác ABC có :

góc ABD = ACB

góc A chung

vậy tam giác ADB đồng dạng tam giác ABC

Suy ra: AD/AB=AB/AC suy ra AB bình phương = AD.AC

b) Ta có AE là phân giác góc A nên:

AC/AB =EC/EB 

AD/AB=FD/FB 

Mặt khác: AD/AB=AB/AC 

Suy ra: FD/FB=EB/EC