cho phương trình mx^2-2(m+1)x+3m-2=0
a) CMR pt trên luôn có nghiệm với mọi giá rị m
b) Tính giá trị của m để pt trên có các nghiệm là nghiệm nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta'=\left(m-1\right)^2+m^2+1>0\) ;\(\forall m\Rightarrow\) phương trình luôn có nghiệm với mọi m
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\left(2m+1\right)\\x_1x_2=-m^2-1\end{matrix}\right.\)
Đặt \(A=\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{x_1+x_2}{x_1x_2}\)
\(A=\dfrac{2m+1}{m^2+1}\ge0\Leftrightarrow2m+1\ge0\Rightarrow m\ge-\dfrac{1}{2}\)
Lời giải:
a) $\Delta=(m+1)^2-(2m-2)=m^2+3>0$ với mọi $m\in\mathbb{R}$ nên PT luôn có 2 nghiệm phân biệt với mọi $m\in\mathbb{R}$
b) Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=2(m+1)\\ x_1x_2=2m-2\end{matrix}\right.\)
Khi đó:
\(E=x_1^2+2(m+1)x_2+2m-2=x_1^2+(x_1+x_2)x_2+x_1x_2=x_1^2+x_2^2+2x_1x_2=(x_1+x_2)^2=4(m+1)^2\)
b)
+) Với m=0 , phương trình (1) trở thành -x+1=0 <=> x=1
+) Với m khác 0 , (1) là phương trình bậc nhất một ẩn
Xét \(\Delta=\left(2m+1\right)^2-4.m\left(m+1\right)=4m^2+4m+1-4m^2-4m=1>0\)
=> m khác 0 phương trình (1) có hai ngiệm phân biệt
Vậy pt (1) luôn có nghiệm với mọi giá trị của m
c) Với m =0 phương trình (1) có nghiệm bằng 1< 2 loại
Với m khác 0
Gọi \(x_1,x_2\)là hai nghiệm phân biệt của phương trình (1)
Khi đó áp dụng định lí Vi-et:
\(\hept{\begin{cases}x_1+x_2=\frac{2m+1}{m}\\x_1.x_2=m+1\end{cases}}\)
Đề sai rồi bạn
đúng nha, em mới thi hồi chiều