K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\dfrac{2+3}{x}hay2+\dfrac{3}{x}\)  vậy

2 tháng 5 2021

cái 2+\(\dfrac{3}{x}\)

NM
4 tháng 5 2021

thực hiện quy đồng ta có :

\(\frac{9}{xy}-\frac{1}{y}=2+\frac{3}{x}\Leftrightarrow9-x=2xy+3y\)

\(\Leftrightarrow4xy+2x+6y+3=21\)

Do x,y nguyên dương nên ta có 

\(\Leftrightarrow\left(2x+1\right)\left(2x+3\right)=21\Leftrightarrow\hept{\begin{cases}2x+1=3\\2y+3=7\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}}\)

4 tháng 12 2019

Trả lời:

NV
5 tháng 3 2023

\(\dfrac{x}{y}=\dfrac{x+y}{y+z}=\dfrac{y}{z}\Rightarrow xz=y^2\)

\(\left(y+2\right)\left(4xz+6y-3\right)=n^2\)

\(\Rightarrow\left(y+2\right)\left(4y^2+6y-3\right)=n^2\)

Gọi \(d=ƯC\left(y+2;4y^2+6y-3\right)\)

\(\Rightarrow4y^2+6y-3-\left(y+2\right)\left(4y-2\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

\(\Rightarrow y+2\) và \(4y^2+6y-3\) nguyên tố cùng nhau

Mà \(\left(y+2\right)\left(4y^2+6y-3\right)\) là SCP \(\Rightarrow y+2\) và \(4y^2+6y-3\) đồng thời là SCP

\(\Rightarrow4y^2+6y-3=k^2\)

\(\Leftrightarrow\left(4y+3\right)^2-21=\left(2k\right)^2\)

\(\Rightarrow\left(4y+3-2k\right)\left(4y+3+2k\right)=21\)

Giải pt ước số trên ra \(y=2\) là số nguyên dương duy nhất thỏa mãn

Thế vào \(xz=y^2=4\Rightarrow\left(x;z\right)=\left(1;4\right);\left(4;1\right);\left(2;2\right)\)

Vậy \(\left(x;y;z\right)=\left(1;2;4\right);\left(4;2;1\right);\left(2;2;2\right)\)

1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2...
Đọc tiếp

1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố

2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố

3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương

4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p

5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2 = ab  +c ( a + b )

Chứng minh: 8c + 1 là số cp

6, Cho các số nguyên dương phân biệt x,y sao cho ( x – y )^4 = x^3 – y^3

Chứng minh: 9x – 1 là lập phương đúng

7, Tìm các số nguyên tố a,b,c sao cho a^2 + 5ab + b^2 = 7^c

8, Cho các số nguyên dương x,y thỏa mãn x > y và ( x – y, xy + 1 ) = ( x + y, xy – 1 ) = 1

Chứng minh: ( x + y )^2 + ( xy – 1 )^2  không phải là số cp

9, Tìm các số nguyên dương x,y và số ngtố p để x^3 + y^3 = p^2

10, Tìm tất cả các số nguyên dương n để 49n^2 – 35n – 6 là lập phương 1 số nguyên dương

11, Cho các số nguyên n thuộc Z, CM:

A = n^5 - 5n^3 + 4n \(⋮\)30

B = n^3 - 3n^2 - n + 3 \(⋮\)48 vs n lẻ

C = n^5 - n \(⋮\)30
D = n^7 - n \(⋮\)42

0