K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2017

a,2^5<2^n<2^7

=>5<n<7

=>n=6

b,2.16> 2^n>4

=2^5>2^n>2^2

=>5>n>2=>n=3,4

c,3^5<3^n<3^5=>n=5

Câu 2: 

a: x=25

Câu 2: 

a: x=25

b: x=13;-13

Câu 2:

a: \(\Leftrightarrow x-15=10\)

hay x=25

Giải:

a) \(\left(x-1\right)\left(y+2\right)=7\) 

\(\Rightarrow\left(x-1\right)\) và \(\left(y+2\right)\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\) 

Ta có bảng giá trị:

x-1-7-117
y+2-1-771
x-6028
y-3-95-1

Vậy \(\left(x;y\right)=\left\{\left(-6;-3\right);\left(0;-9\right);\left(2;5\right);\left(8;-1\right)\right\}\) 

b) \(\left(x-2\right)\left(3y+1\right)=17\) 

\(\Rightarrow\left(x-2\right)\) và \(\left(3y+1\right)\inƯ\left(17\right)=\left\{\pm1;\pm17\right\}\) 

Ta có bảng giá trị:

x-2-17-1117
3y+1-1-17171
x-151319
y\(\dfrac{-2}{3}\) (loại)-6 (t/m)\(\dfrac{16}{3}\) (loại)0 (t/m)

Vậy \(\left(x;y\right)=\left\{\left(1;-6\right);\left(19;0\right)\right\}\)

30 tháng 6 2021

Ko ghi lại đề nhé 

a) \(TH1\left[{}\begin{matrix}x-1=1\\y+2=7\end{matrix}\right.=>\left[{}\begin{matrix}x=2\\y=5\end{matrix}\right.\)

\(TH2:\left[{}\begin{matrix}x-1=-1\\y+2=-7\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\y=-9\end{matrix}\right.\)

\(TH3:\left[{}\begin{matrix}x-1=7\\y+2=1\end{matrix}\right.=>\left[{}\begin{matrix}x=8\\y=-1\end{matrix}\right.\)

\(TH4:\left[{}\begin{matrix}x-1=-7\\y+2=-1\end{matrix}\right.=>\left[{}\begin{matrix}x=-6\\y=-3\end{matrix}\right.\)

b) \(TH1:\left[{}\begin{matrix}x-2=1\\3y+1=17\end{matrix}\right.=>\left[{}\begin{matrix}x=3\\y=\dfrac{16}{3}\end{matrix}\right.=>Loại\)

\(TH2:\left[{}\begin{matrix}x-2=-1\\3y+1=-17\end{matrix}\right.=>\left[{}\begin{matrix}x=1\\y=-6\end{matrix}\right.Chọn\)

\(TH3:\left[{}\begin{matrix}x-2=17\\3y+1=1\end{matrix}\right.=>\left[{}\begin{matrix}x=19\\y=0\end{matrix}\right.=>Chọn\)

\(TH4:\left[{}\begin{matrix}x-2=-17\\3y+1=-1\end{matrix}\right.=>\left[{}\begin{matrix}x=-15\\y=\dfrac{-2}{3}\end{matrix}\right.=>Loại\)

Bạn tự kết luận hộ mk nha

10 tháng 8 2021

a, 4x -15=-75-x                                                 b,72-3x= 5x+8

4x+x=-75+15                                                       -3x-5x=8-72

5x=-60                                                                 -8x=-64

x=-60:5                                                                 8x=64

x=-14                                                                       x=64:8

                                                                                 x=8

c,3Ix-7I=21                                                         d,-7Ix+3I=-49

Ix-7I=21:3                                                               Ix+3I=-49:-7

Ix-7I=7                                                                    Ix+3I=7

x-7=7     hoặc x-7=-7                                            x+3=7 hoặc x+3=-7

x=14        hoặc x=0                                               x=4  hoặc x=-10

AH
Akai Haruma
Giáo viên
9 tháng 1 2023

Bài 1:

a. Gọi d là ƯCLN(n+2, n+3). Khi đó:

$n+2\vdots d; n+3\vdots d$

$\Rightarrow (n+3)-(n+2)\vdots d$

Hay $1\vdots d$

$\Rightarrow d=1$. Vậy $ƯCLN(n+2, n+3)=1$ nên hai số này nguyên tố cùng nhau.

b.

Gọi $d=ƯCLN(2n+1, 9n+4)$

$\Rightarrow 2n+1\vdots d; 9n+4\vdots d$

$\Rightarrow 9(2n+1)-2(9n+4)\vdots d$

Hay $1\vdots d$

$\Rightarrow d=1$. Vậy $ƯCLN(2n+1, 9n+4)=1$ nên hai số này nguyên tố cùng nhau.

AH
Akai Haruma
Giáo viên
9 tháng 1 2023

Bài 2:

a. Vì ƯCLN(a,b)=24 nên đặt $a=24x, b=24y$ với $x,y$ là 2 số nguyên tố cùng nhau.

Khi đó: $a+b=24x+24y=192$

$\Rightarrow 24(x+y)=192$

$\Rightarrow x+y=8$

Vì $(x,y)$ nguyên tố cùng nhau nên $(x,y)=(1,7), (3,5), (5,3), (1,7)$

$\Rightarrow (a,b)=(24,168), (72, 120), (120,72), (168,24)$