K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: góc MDH=90 độ-góc DMH

=90 độ-2*góc MDF

=90 độ-2*góc E

=góc F+góc E-2*góc E

=góc F-gócE

b: (EF+DH)^2-(DF+DE)^2

=EF^2+2*EF*DH+DH^2-DF^2-DE^2-2*DF*DE

=DH^2>0

=>EF+DH>DF+DE
=>EF-DE>DF-DH

8 tháng 3 2019

D F E H M K I

a) Do M là trung điểm của EF nên ME=MF=MD(đường trung tuyến ứng với cạnh huyền bằng một nửa cạnh huyền)

Suy ra  \(\Delta MDE\) cân tại M.

\(\Rightarrow\widehat{E}=\widehat{EDM}\)

Ta có:\(\widehat{F}=90^0-\widehat{E}\)

\(\widehat{HDE}=90^0-\widehat{E}\)

\(\Rightarrow\widehat{F}=\widehat{HDE}\)

Mà \(\widehat{MDH}=\widehat{MDE}-\widehat{HDE}\)

\(\Rightarrow\widehat{MDH}=\widehat{E}-\widehat{F}\)

b) Trên EF lấy điểm K sao cho EK=ED

    Trên DF lấy điểm I sao cho DI=DH

Khi đó:\(EF-DE=EF-EK=KF\)

\(DF-DH=DF-DI=IF\)

Ta cần chứng minh \(KF>IF\),thật vậy!

Ta có:\(EK=ED\)

\(\Rightarrow\Delta EDK\) cân tại E

\(\Rightarrow\widehat{EKD}=\widehat{EDK}\)

Ta lại có:\(\widehat{EDK}+\widehat{KDI}=90^0\)

\(\widehat{EKD}+\widehat{HDK}=90^0\)

Mà \(\widehat{EKD}=\widehat{EDK}\left(cmt\right)\)

\(\Rightarrow\widehat{KDI}=\widehat{HDK}\)

Xét \(\Delta DHK\&\Delta DIK\) có:

\(DH=DI\)(theo cách chọn điểm phụ)

\(\widehat{KDI}=\widehat{HDK}\left(cmt\right)\)

\(DK\) là cạnh chung

\(\Rightarrow\Delta DHK=\Delta DIK\left(c-g-c\right)\)

\(\Rightarrow\widehat{KID}=90^0\)

\(\Rightarrow\Delta FIK\) vuông tại I

\(\Rightarrow FK>FI^{đpcm}\)

29 tháng 1 2020

zZz Phan Gia Huy zZz trả lời đúng rồi

a: Ta có: ΔDEF cân tại D

mà DH là đường cao

nên H là trung điểm của EF

hay EH=FH

b: EH=FH=EF/2=3(cm)

Xét ΔDHE vuông tại H có \(DE^2=DH^2+HE^2\)

nên DH=4(cm)

c: Xét ΔDEM và ΔDFN có

DE=DF

\(\widehat{EDM}\) chung

DM=DN

Do đó: ΔDEM=ΔDFN

Suy ra: \(\widehat{DEM}=\widehat{DFN}\)

d: Xét ΔNEH và ΔMFH có 

NE=MF

\(\widehat{E}=\widehat{F}\)

EH=FH

Do đó: ΔNEH=ΔMFH

Suy ra: HN=HM

hay H nằm trên đường trung trực của MN(1)

Ta có: KM=KN

nên K nằm trên đường trung trực của MN(2)

Ta có: DN=DM

nên D nằm trên đường trung trực của MN(3)

Từ (1), (2) và (3) suy ra D,H,K thẳng hàng

14 tháng 2 2022

a. xét tam giác DHE và tam giác DHF, có:

D: góc chung

DE = DF ( DEF cân )

DH: cạnh chung

Vậy tam giác DHE = tam giác DHF ( c.g.c )

=> HE = HF ( 2 cạnh tương ứng )

b.ta có: EH = EF :2 ( EF là đường cao cũng là trung tuyến ) = 6 : 2 =3 cm

áp dụng định lý pitago vào tam giác vuông DHE, có:

\(DE^2=DH^2+EH^2\)

\(\Rightarrow DH=\sqrt{DE^2-EH^2}=\sqrt{5^2-3^2}=\sqrt{16}=4cm\)

c.xét tam giác DEM và tam giác DFN có:

DE = DF ( DEF cân )

DM = DN ( gt )

D: góc chung

Vậy tam giác DEM = tam giác DFN ( c.g.c )

=> góc DEM = góc DFN ( 2 góc tương ứng )

d.xét tam giác DKM và tam giác DKN, có:

DM = DN ( gt )

D: góc chung

DK: cạnh chung

Vậy tam giác DKM = tam giác DKN ( c.g.c )

=> góc DKM = góc DKN = 90 độ ( tam giác BNM cân, K là trung điểm cũng là đường cao )

=> DK vuông BC

Mà DH cũng vuông BC

=> D,H,K thẳng hàng

Chúc bạn học tốt!!!

21 tháng 3 2022

a, Ta có: DH là đường cao trong tam giác cân DEF

⇒DH vừa là đường cao, vừa là đường trung tuyến trong tam giác cân DEF

⇒HE=HF 

Ta có: HE=HF=EF/2=8/2=4 (cm)

Xét ΔDHE vuông tại H

Theo định lý Pi-ta-go, ta có:

DF²=DH²+HF²

⇒DH²=DF²-HF²

⇒DH²=5²-4²

⇒DH²=9

⇒DH=√9=3 (cm)

b, Xét ΔDME và ΔDNF có:

DM=DN (GT)

A là góc chung

DE=DF (GT)

⇒ ΔDME=ΔDNF (c.g.c)

⇒EM=FN (2 cạnh tương ứng)

    DEM=DFN (2 góc tương ứng)

c, Ta có: E=F (GT)

và DEM=DFN (cmt)

⇒KEF=KFE 

⇒ΔKEF cân tại K

⇒KE=KF

d, Ta có: DH⊥EF và HE=HF

⇒DH là đường trung trực của EF

mà KE=KF

⇒K là điểm thuộc đường trung trực DH

⇒D, K, H thẳng hàng

21 tháng 3 2022

cảm ơn bạn

a: Xet ΔDME và ΔDNF có

DM=DN

góc MDE chung

DE=DF

=>ΔDME=ΔDNF

=>EM=FN và góc DEM=góc DFN

b: Xet ΔNEF và ΔMFE có

NE=MF

EF chung

NF=ME

=>ΔNEF=ΔMFE
=>góc KEF=góc KFE

=>KE=KF

c: ΔDEF cân tại D

mà DH là đường cao

nên DH là trung tuyến

Xét ΔDEF có 

DH,FN,EM là trung tuyến

=>DH,FN,EM đồng quy

25 tháng 12 2022

hình tự kẻ

tứ giác ADBH có:

D vuông (gt)

Góc HAD vuông ( AH vuông DE )

Góc HBD vuông ( BH vuông DF )

=> tứ giác ADBH là HCN

=> AB=DH; I là trung điểm của AB và DH ( tính chất hcn )

Ta có:

AB=DH (cmt)

I là trung điểm của AB và DH (cmt)

=> IH = IB 

Tam giác HIB có:

IH = IB (cmt)

=> tam giác HIB cân tại I

=> góc IHB = góc IBH (2 góc đáy trong tam giác cân )