K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2017

tu nhien co diem K o dau z, cho CK do 

16 tháng 12 2018

sai đề bạn ơi

A C B D E H K I 2 1

a, Ta có : \(\Delta\)ABC cân tại A (gt)

\(\Rightarrow\)Góc B = góc \(C_1\)

Mà góc \(C_1=C_2\)(đối đỉnh)

\(\Rightarrow\)Góc B = góc \(C_2\)

Xét \(\Delta BDH\)\(\perp H\)(DH\(\perp\)BC) và \(\Delta CEK\perp K\)(EK \(\perp\)BC) có :

BD=CE (gt)

Góc B = góc C\(_2\)(cmt)

\(\Rightarrow\Delta BDH=\Delta CEK\)(ch-gn)

\(\Rightarrow DH=EK\)( 2 cạnh tg ứng)

Vậy...

b, Ta có : DH và EK cùng vuông góc vs BC (gt)

\(\Rightarrow\)DH \(//\)EK (Quan hệ từ vuông góc đến song song)

\(\Rightarrow\)Góc HDI = góc IEC ( 2 góc so le trong )

Xét \(\Delta HDI\perp H\left(DH\perp BC\right)\)và \(\Delta KEI\perp K\left(EK\perp BC\right)\)có :

DH=CE (\(\Delta BEH=\Delta CEK\))

Góc HDI = góc IEC (cmt)

\(\Rightarrow\)\(\Delta HDI=\Delta KEI\)(cgv-gnk)

\(\Rightarrow DI=EI\)( 2 cạnh tg ứng )

Mà D,I,E thẳng hàng ( DE và BC cắt nhau tại I )

\(\Rightarrow\)I là trung điểm của BC

Vậy...

Chúc bn hok tốt

a: Xét ΔMBD vuông tại D và ΔNCE vuông tại E có 

DB=CE

\(\widehat{MBD}=\widehat{NCE}\left(=\widehat{ACB}\right)\)

Do đó: ΔMBD=ΔNCE

Suy ra: DM=EN

a: Xét ΔDHB vuông tại H và ΔEKC vuông tại K có
BD=CE

góc DBH=góc ECK

=>ΔDHB=ΔEKC

=>BH=CK

b: Tham khảo:

loading...

12 tháng 2 2016

a) Vì AB=AC nên tam giác ABC cân tại A=> góc B= góc ACB

Mà góc ACB= gốc ICE ( hai góc đối đỉnh) nên góc B= góc ICE 

Xét tam giác BDH và tam giác CEI có:

góc BHD= góc CIE= 90 độ

BD=CE

góc B= góc ICE

=> tam giác BDH= tam giác CEI ( cạnh huyền- góc nhọn)

=> DH=EI

b) Vị gốc DHO= goc OIE ( hai góc so le trong) nền ĐH//IE

=> goc HDO= gốc OEI ( hai góc so le trong)

Xét tam giác HDO và tam giác IEO co:

goc DHO= goc EIO= 90 do 

DH=EI

goc HDO= goc IEO

=> tam giac HDO= tam giac IEO ( g. c. g)

=> HO=IO

=> O la trung diem cua doan thang HI

 

 

7 tháng 3 2018

(Cái này là mình giải trong trường hợp AM là tia đối của AB nhé)

a)  Tam giác ABC cân tại A => ABC= ACB

Mà ACB= ECN(đối đỉnh) => ABC= ECN

Xét tam giác BMD và tam giác CNE có :

BDM=CEN(=900);BD=CE(GT);ABC=ECN(chứng minh trên)

Do đó tam giác BMD=tam giác CNE(g.c.g)=>MD=NE(2 cạnh tương ứng) (đpcm)

b)Vì MDE=CEN(=900)=>MD//EN(Do có 1 cặp góc bằng nhau ở vị trí SLT)

=>DMN=ENM(cặp góc SLT)

Xét tam giác DMI và tam giác ENI có :

DMN=ENM(c/m trên);MD=NE(đã c/m ở câu a);BMD=IEN(=900)

Do đó tam giác DMI= tam giác ENI(g.c.g)=>MI=NI(2 cạnh tương ứng)

Mà I nằm giữa M và N => I là TĐ của MN 

Hay BC cắt MN tại TĐ I của MN.

(câu c mk ko bít làm)

a: Xét ΔBDM vuông tại D và ΔCEN vuông tại E có

BM=CN

góc DBM=góc ECN=góc ACB

=>ΔBDM=ΔCEN

=>MD=EN

b: Xét tứ giác MDNE có

MD//EN

MD=EN

=>MDNE là hình bình hành

=>MN cắt DE tại trung điểm của mỗi đường

=>I la trung điểm của DE

c: Xét ΔABO vuông tại B và ΔACO vuông tại C có

AO chung

AB=AC
=>ΔABO=ΔACO

=>BO=CO

mà AB=AC
nên AO là trung trực của BC