Cho hình lăng trụ abc.a’b’c’ có đáy là tam giác đều cạnh 2a, các cạnh bên của hình lăng trụ bằng nhau và đều bằng a. Tính khoảng cách d(BC, AA’)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án là C
Gọi G là trọng tâm của tam giác ABC.
Do tam giác ABC đều cạnh a nên
Diện tích tam giác ABC bằng a 3 3 4
Do đỉnh A’ cách đều ba đỉnh A, B, C nên A'G ⊥ (ABC) => A'G là đường cao của khối lăng trụ.
Theo giả thiết, ta có A ' A G ^ = 45 0 => ∆ A'GA vuông cân. Tù đó suy ra
Vậy thể tích của khối lăng trụ bằng
Gọi D là trung điểm của BC, H là chân đường cao kẻ từ A’ đến , và K là chân đường cao kẻ từ H đến AA’. Dễ thấy khoảng cách từ BC đến AA’ bằng với khoảng cách từ D đến AA’ và bằng 3/2d(H,AA’).
Đáp án D
Chọn B
Gọi M là trung điểm của BC và H là hình chiếu vuông góc của A trên đường thẳng A’M
Khi đó
Đáp án B
Phương pháp giải:
Dựng hình, xác định khoảng cách giữa hai đường thẳng chéo nhau để tính chiều cao lăng trụ
Lời giải: Gọi M là trung điểm của BC.
Ta có
Kẻ => MH là đoạn vuông góc chung của BC, AA’
Mà
Xét tam giác vuông AA’G có :
Vậy thể tích cần tính là: