Chứng minh rằng A= 1- 3 +3²-3³+...+3^98-3^99 chia hết cho 4
Giúp mình với nhé mình cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Ta có: \(\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{6}-1\right)\left(\dfrac{1}{10}-1\right)\cdot...\cdot\left(\dfrac{1}{45}-1\right)\)
\(=\dfrac{-2}{3}\cdot\dfrac{-5}{6}\cdot\dfrac{-9}{10}\cdot...\cdot\dfrac{-44}{45}\)
\(=\dfrac{-2}{3}\cdot\dfrac{-5}{6}\cdot\dfrac{-9}{10}\cdot\dfrac{-14}{15}\cdot\dfrac{-20}{21}\cdot\dfrac{-27}{28}\cdot\dfrac{-35}{36}\cdot\dfrac{-44}{45}\)
\(=\dfrac{11}{27}\)
Câu 2:
B=1+1/2+1/3+....+1/2010
=(1+1/2010)+(1/2+1/2009)+(1/3+1/2008)+...(1/1005+1/1006)
= 2011/2010+2011/2.2009+2011/3.2008+...+2011/1005.1006
=2011.(1/2010+.....1/1005.1006)
Vậy B có tử số chia hết cho 2011 (đpcm).
Câu 3:
\(P=\dfrac{2}{3}.\dfrac{4}{5}.\dfrac{6}{7}....\dfrac{98}{99}\\ P< \dfrac{3}{4}.\dfrac{5}{6}.\dfrac{6}{7}....\dfrac{99}{100}\\ P^2< \dfrac{2}{100}\)
Mà
\(\dfrac{2}{100}=\dfrac{1}{50}< \dfrac{1}{49}\\ \Rightarrow P< \dfrac{1}{7}\)
S tận cùng =0 nha bạn mình tính rồi đó lúc nãy mình bị lộn
bài 2 có cần tìm tận cung ko bạn
\(Y=1+3+3^2+3^3+.......+3^{98}\)
\(=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+.........+\left(3^{96}+3^{97}+3^{98}\right)\)
\(=\left(1+3+3^2\right)+3^3.\left(1+3+3^2\right)+......+3^{96}.\left(1+3+3^2\right)\)
\(=\left(1+3+9\right)+3^3.\left(1+3+9\right)+.........+3^{96}.\left(1+3+9\right)\)
\(=13+3^3.13+.......+3^{96}.13\)
\(=13.\left(1+3^3+.......+3^{96}\right)⋮13\)( đpcm )
Y = 1 + 3 + 32 + 33 + ... + 398
= ( 1 + 3 + 32 ) + ( 33 + 34 + 35 ) + ... + ( 396 + 397 + 398 )
= 13 + 33( 1 + 3 + 32 ) + ... + 396( 1 + 3 + 32 )
= 13 + 33.13 + ... + 396.13
= 13( 1 + 33 + ... + 396 ) chia hết cho 13 ( đpcm )
a=(1-3+3^2-3^3)+(3^4-3^5...+(3^96-3^97+3^98-3^99)
a=(1-3+3^2-3^3)+3^4x(1-3+3^2-3^3)+...+3^96x(1-3+3^2-3^3)
a=(-20)+3^4x(-20)+...+3^96x(-20)
a=(-20)+(3^4+3^8+...+3^96)
vi-20chia het cho 4=>achia hetcho 4
a=(1-3+3^2-3^3)+(3^4-3^5...+(3^96-3^97+3^98-3^99)
a=(1-3+3^2-3^3)+3^4x(1-3+3^2-3^3)+...+3^96x(1-3+3^2-3^3)
a=(-20)+3^4x(-20)+...+3^96x(-20)
a=(-20)+(3^4+3^8+...+3^96)
vi-20chia het cho 4=>achia hetcho 4
tick mk nha
Giải
A=(1+3^1)+(3^2+3^3)+...+(3^98+3^99)
A=4.1+3^2.(1+3^1)+...3^98.(1+3^1)
A=4.1+3^2.4+...3^98.4
A=4.(1+3^2+3^4+...+3^98)
=> A chia hết cho 4
tao chap het