Cho tam giac abc tia phan giac cua goc abc cat canh ac tai d tu d ke duong thang //bc dg thanh nay cat canh ab tai diem e tia phan giac cua goc aed cat ad tai f ctr a,tam giac ebdco 2 goc bang nhau b,ef//bd
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAHD vuông tại H và ΔAID vuông tại I có
AD chung
AH=AI
=>ΔAHD=ΔAID
=>góc HAD=gócIAD
=>AD là phân giác của góc HAI
b: Xét ΔDHM vuông tại H và ΔDIC vuông tại I có
DH=DI
góc HDM=góc IDC
=>ΔDHM=ΔDIC
=>DM=DC
=>ΔDMC cân tại D
c: AH+HM=AM
AI+IC=AC
mà AH=AI và HM=IC
nên AM=AC
=>ΔAMC cân tại A
mà AN là trung tuyến
nên AN vuông góc MC
Xét ΔCAM có
AN,MI,CH là các đường cao
=>AN,MI,CH đồng quy
a)Vì ED//BF;BD//EF
\(\Rightarrow\)FEDB là hình bình hành
\(\Rightarrow\)FB=DE
Mà AE=FB\(\Rightarrow\)AE=DE
\(\Rightarrow\)\(\Delta AED\)là tam giác cân
b)Vì ED//AB\(\Rightarrow\widehat{EDA}=\widehat{BAD}\left(1\right)\)
Vì \(\Delta AED\) là tam giác cân
\(\Rightarrow\widehat{EAD}=\widehat{EDA}\left(2\right)\)
Từ (1) và (2) suy ra AD la phan giac cua goc A
\(\Rightarrow\)
s